
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Control

Aleksei Tepljakov

Fractional-order Calculus based Identification
and Control of Linear Dynamic Systems

Master thesis

Supervisors: Eduard Petlenkov,

Juri Belikov,

Department of Computer Control,

Tallinn University of Technology

TALLINN 2011

Declaration: I hereby declare that this master’s thesis, my original investigation and

achievement, submitted for the master’s degree at Tallinn University of Technology,

has not been submitted for any degree or examination.

Deklareerin, et käesolev magistritöö, mis on minu iseseisva töö tulemus, on esitatud

Tallinna Tehnikaülikooli magistrikraadi taotlemiseks ja selle alusel ei ole varem taotle-

tud akadeemilist kraadi.

Aleksei Tepljakov

Contents

Abstract 6

Kokkuvõte 7

Acknowledgements 8

1 Introduction 9

1.1 Fractional-order Calculus . 9

1.2 Outline of the Thesis . 10

2 Fractional Calculus in System Theory 12

2.1 Mathematical Background . 12

2.1.1 Definitions . 13

2.1.2 Properties . 14

2.1.3 Examples . 14

2.2 Laplace Transform . 16

2.3 Fractional-order Models . 17

2.4 Fractional System Analysis . 19

2.4.1 Stability . 19

2.4.2 Time Domain Analysis . 20

2.4.3 Frequency Domain Analysis 22

2.5 Approximation of Fractional Operators 22

2.6 Discretization . 23

1

3 Identification by Fractional Model 24

3.1 Identification Basics . 24

3.2 Time-domain Identification . 25

3.3 Frequency-domain Identification . 28

4 Fractional-order Control 32

4.1 Fractional PID Controller . 32

4.1.1 Introduction . 32

4.1.2 Effects of Fractional Control Actions 33

4.1.3 Tuning and Optimization . 35

4.2 Fractional Lead-Lag Compensator 37

4.3 TID Controller . 38

5 FOMCON Toolbox for MATLAB 40

5.1 Introduction . 40

5.2 Overview . 42

5.3 Used Notations . 43

6 FOMCON User Manual 45

6.1 System Analysis Module . 45

6.1.1 The FOTF Object . 45

6.1.1.1 Function fotf() 46

6.1.1.2 Function newfotf() 47

6.1.1.3 Block Interconnection Functions 48

6.1.1.4 Trimming Functions 50

6.1.2 Stability Analysis . 51

6.1.2.1 Function isstable() 51

6.1.3 Time Domain Analysis . 52

6.1.3.1 Function lsim() 52

2

6.1.3.2 Function step() 53

6.1.3.3 Function impulse() 54

6.1.4 Frequency Domain Analysis 55

6.1.4.1 Function freqresp() 55

6.1.4.2 Function bode() 55

6.1.4.3 Function nyquist() 56

6.1.4.4 Function nichols() 56

6.1.4.5 Function margin() 57

6.1.5 Fractional-order System Approximation 58

6.1.5.1 Function oustapp() 58

6.1.5.2 Object fsparam() 59

6.1.6 Object Conversion Functions 60

6.1.7 Graphical User Interface . 61

6.1.7.1 Function fotf_gui() 61

6.1.8 System Analysis Examples 63

6.2 System Identification Module . 67

6.2.1 Time Domain Identification 67

6.2.1.1 Object fidata() 67

6.2.1.2 Function fid() 69

6.2.2 Frequency Domain Identification 71

6.2.2.1 Object ffidata() 71

6.2.2.2 Function ffid() 72

6.2.2.3 Function ffid_bf() 73

6.2.3 Graphical User Interfaces 74

6.2.3.1 Function fotfid() 74

6.2.3.2 Function fotfrid() 76

6.2.4 Identification Examples . 78

3

6.3 System Control Module . 85

6.3.1 Fractional-Order Controller Design 85

6.3.1.1 Function fracpid() 85

6.3.1.2 Function tid() 86

6.3.1.3 Function frlc() 86

6.3.2 Integer-Order Controller Tuning By Process Model Approxi-

mation . 87

6.3.2.1 Function fotf2io() 87

6.3.3 PIλDµ Controller Optimization 88

6.3.3.1 Object fpopt() 88

6.3.3.2 Function fpid_optimize() 90

6.3.4 Graphical User Interfaces 91

6.3.4.1 Function fpid() 91

6.3.4.2 Function fpid_optim() 93

6.3.4.3 Function iopid_tune() 94

6.3.5 Controller Design and Optimization Examples 96

6.4 Simulink Blockset . 102

6.4.1 Library Overview . 102

6.4.2 Block Description . 103

6.4.2.1 Fractional operator 103

6.4.2.2 Fractional derivative 104

6.4.2.3 Fractional integrator 104

6.4.2.4 Fractional Transfer Fcn 105

6.4.2.5 Fractional PID controller 106

6.4.2.6 TID controller . 106

6.4.2.7 Discrete fractional Transfer Fcn 107

6.4.2.8 Discrete fractional PID controller 108

6.4.3 Examples . 108

4

Discussion 112

Conclusions 115

Bibliography 122

List of Publications 125

5

Abstract

Fractional-order Calculus based Identification and Control of Lin-

ear Dynamic Systems

Present thesis is devoted to the research of fractional-order calculus in the context of

modeling, identification and control of dynamic systems. The first part of the thesis

introduces the reader to the theoretical concepts behind fractional-order calculus and

its applications in system theory, system identification and control. In the second part

the FOMCON (“Fractional-order Modeling and Control”) toolbox for MATLAB, de-

veloped by the author, is presented and a detailed user manual for it is provided with

illustrative examples.

All major calculations and simulations performed in this thesis are done in the MAT-

LAB/Simulink environment. Additionally, some examples are performed using Max-

ima and Scilab computer algebra systems.

It is assumed that the reader has previous knowledge in the field of system theory.

6

Kokkuvõte

Murrulistel tuletistel põhinev lineaarsete dünaamiliste süsteemide

identifitseerimine ja juhtimine

Antud väitekiri on pühendatud murruliste tuletiste rakenduste uurimisele dünaamiliste

süsteemide modelleerimise, identifitseerimise ja juhtimise kontekstis. Väitekiri esim-

ese osa sisuks on murruliste tuletistega seotud teooria. Samuti on antud selle rakendus

süsteemiteoorias, mudeli identifitseerimisel ja süsteemide juhtimisel. Teine osa kes-

kendub uuele, väitekirja autori poolt loodud MATLAB arvutuspaketile, mille nimeks

on FOMCON (“Fractional-order Modeling and Control” ehk “Murdarvuline Model-

leerimine ja Juhtimine”). Põhjalik arvutuspaketi kasutusjuhend on toodud selgitustega

ning näidetega.

Kõik töös esitatud arvutused ja simulatsioonid on tehtud MATLAB/ Simulink kesk-

konnas. Mõned näited on tehtud ka Maxima ja Scilab arvutusplatformide abil.

Eeldatakse, et lugejal on olemas eelnevad teadmised süsteemiteooria valdkonnast.

7

Acknowledgments

This work was supported the Estonian Science Foundation Grant no. 8738.

8

Chapter 1

Introduction

1.1 Fractional-order Calculus

The concept of the differentiation operator D = d/ dx is a well-known fundamental

tool of modern calculus. For a suitable function f the n-th derivative is well defined as

Dnf(x) = d nf(x)/ dxn, where n is a positive integer. However, what happens if we

extend this concept to a situation, when the order of differentiation is arbitrary, for ex-

ample, fractional? That was the very same question L’Hôpital addressed to Leibniz in

a letter in 1695. Since then the concept of fractional calculus has drawn the attention of

many famous mathematicians, including Euler, Laplace, Fourier, Liouville, Riemann,

Abel and Laurent. But it was not until 1884 that the theory of generalized operators

reached a satisfactory level of development for the point of departure for the modern

mathematician [1].

However, fractional-order calculus was not particularly popular until recent years when

benefits stemming from using its concepts became evident in various scientific fields,

including system modeling and automatic control. It is also apparent that this rise of

interest is related to accessibility of more efficient and powerful computational tools

provided by the evolution of technology and introduction of computer algebra systems

(CAS), such as MATLAB and Mathematica.

Recent findings support the notion that fractional-order calculus should be employed

where more accurate modeling and robust control are concerned. Specifically, fractional-

order calculus found its way into complex mathematical and physical problems [6],

[10]. In general, fractional-order calculus may be useful when modeling any system

9

which has memory and/or hereditary properties [4].

In the field of automatic control fractional calculus is used to obtain more accurate

models, develop new control strategies and enhance the characteristics of control sys-

tems. Several toolboxes have been developed for this particular set of tasks. Among

them are MATLAB toolboxes CRONE [7], developed by the CRONE team, and NIN-

TEGER , developed by Duarte Valério [8].

This thesis is devoted to the research of possibilities provided by fractional calculus in

system theory, identification and control and describes a new MATLAB toolbox FOM-

CON, developed by the author of the thesis, in which the corresponding features are

implemented. The toolbox is built upon an existing toolset [2] and provides new func-

tionality, convenience functions, various utilities and a set of graphical user interfaces

(GUIs) to facilitate the workflow.

1.2 Outline of the Thesis

The thesis is organized as follows. In Chapter 2 the reader is presented with an

overview of the mathematical concepts behind fractional-order calculus and its ap-

plication in system theory. This chapter also introduces the reader to the notion of

fractional-order models and basics of fractional-order system analysis. Finally, frac-

tional system approximation by integer-order filters and discretization are also dis-

cussed.

In Chapter 3 methods for identifying a system by fractional-order model are presented.

Both time-domain and frequency-domain identification algorithms are discussed.

Chapter 4 introduces the reader to the concept of fractional-order controllers. These

include the fractional PID controller, generalized lead-lag compensator and the Tilt-

Integral-Derivative controller. Methods on tuning and optimizing the fractional-order

PID controller are also presented.

In Chapter 5 the reader is made familiar with the FOMCON toolbox for MATLAB,

motivation behind its development and its relation to other existing toolboxes. The

FOMCON user manual follows in Chapter 6, in which all the major functions and

objects of the toolbox are presented and described. Illustrative examples are also given.

In the final chapters, the author’s reflections on the topic of fractional calculus in the

10

context of the realized toolbox are given. In the last chapter conclusions are drawn and

further toolbox development perspectives (such as porting it to a different computing

platform) are addressed.

11

Chapter 2

Fractional Calculus in System Theory

In this chapter we shall discuss the mathematical basis of fractional calculus and its

applications in system theory. The chapter is organized as follows. In Section 2.1 defi-

nitions of fractional-order operators are given along with their properties and some ex-

amples. In Section 2.2 the Laplace transform for fractional-order operators is defined.

In Section 2.3 fractional system model representations are given. In Section 2.4 basics

of time-domain and frequency-domain analysis of fractional systems are presented. In

Section 2.5 the reader is introduced to methods of approximating a fractional-order

system by an integer-order model. Finally, in Section 2.6 some aspects of fractional

system discretization are given.

2.1 Mathematical Background

Fractional calculus is a generalization of integration and differentiation to non-integer

order operator aDα
t , where a and t denote the limits of the operation and α denotes the

fractional order such that

aD
α
t =


dα

d tα
<(α) > 0,

1 <(α) = 0,∫ t
a

(d t)−α <(α) < 0,

where generally it is assumed that α ∈ R, but it may also be a complex number [3].

One of the reasons why fractional calculus is not yet found in elementary texts is

a certain degree of controversy found in the theory [1]. This is why there is not a

12

single definition for a fractional-order differintegral operator. Rather there are multiple

definitions which may be useful in a specific situation. Further several commonly used

definitions of fractional-order operators are presented.

2.1.1 Definitions

We first define the fractional differintegral operator according to Riemann-Liouville,

which is the most widely used definition in fractional calculus [5].

Definition 2.1.1 (Riemann-Liouville)

aD
α
t f(t) =

1

Γ(m− α)

(
d

d t

)m ∫ t

a

f(τ)

(t− τ)α−m+1
dτ , (2.1)

where m− 1 < α < m, m ∈ N,α ∈ R+ and Γ (·) is Euler’s gamma function.

Next, consider an alternative definition according to Caputo.

Definition 2.1.2 (Caputo)

0D
α
t f(t) =

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1
d τ, (2.2)

where m− 1 < α < m, m ∈ N.

Another definition is the Grünwald-Letnikov one. This definition can be especially

useful due to its importance in applications.

Definition 2.1.3 (Grünwald-Letnikov)

aD
α
t f (t) = lim

h→0

1

hα

[t−ah]∑
j=0

(−1)j
(
α

j

)
f (t− jh) , (2.3)

where [·] means the integer part.

13

2.1.2 Properties

Fractional-order differentiation has the following properties [2], [5], [4]:

1. If f(t) is an analytic function, then the fractional-order differentiation 0Dα
t f(t)

is also analytic with respect to t.

2. If α = n and n ∈ Z+, then the operator 0Dα
t can be understood as the usual

operator d n/ d tn.

3. Operator of order α = 0 is the identity operator: 0D0
t f(t) = f(t).

4. Fractional-order differentiation is linear; if a, b are constants, then

0D
α
t

[
af(t) + bg(t)

]
= a 0D

α
t f(t) + b 0D

α
t g(t). (2.4)

5. For the fractional-order operators with <(α) > 0, <(β) > 0, and under reason-

able constraints on the function f(t) it holds the additive law of exponents:

0D
α
t

[
0D

β
t f(t)

]
= 0D

β
t

[
0D

α
t f(t)

]
= 0D

α+β
t f(t) (2.5)

6. The fractional-order derivative commutes with integer-order derivative

d n

d tn
(
aD

α
t f(t)

)
= aD

α
t

(
d nf(t)

d tn

)
= aD

α+n
t f(t), (2.6)

under the condition t = a we have f (k)(a) = 0, (k = 0, 1, 2, ..., n− 1).

2.1.3 Examples

Further, several fractional derivative computation examples are provided.

Example 2.1.1 Let us compute the Riemann-Liouville fractional derivative of order

α = 1
2

for an elementary function f(t) = t2 taking a = 0:

0D
1
2
t

(
t2
) RL

=
1

Γ(1− 1
2
)

d

d t

(∫ t

0

τ 2

(t− τ)
1
2
−1+1

d τ

)
=

1√
π

d

d t

(
16 · t 52

15

)
=

8 t
3
2

3
√
π
.

14

It can be shown, that in this case Caputo’s definition yields the same result:

0D
1
2
t

(
t2
) C

=
1

Γ(1− 1
2
)

∫ t

0

(
τ 2
)(1)

(t− τ)
1
2
−1+1

d τ =
1√
π

∫ t

0

2τ

(t− τ)
1
2

d τ =
8 t

3
2

3
√
π
.

A CAS may be used to carry out these symbolic computations. For example, an open-

source application Maxima1 can be used to define the functions RLDif(f(x), x, α, a)

and CapDif(f(x), x, α) respectively:

RLDif(fn,x,alp,a):=

block ([m:[], fn:fn, it:[], v:[], x:x, _tau],

assume(x>0, _tau>0),

m: ceiling(alp), v: m-alp,

fnt(_tau):=ev(subst(_tau, x, fn)),

it: integrate(fnt(_tau)/((x-_tau)^(alp-m+1)),_tau,a,x),

1/gamma(v)*diff(it,x,m))

CapDif(fn,x,alp):=

block ([m:[], fn:fn, df:[], dff:[], v:[]],

assume(x>0),

fn(x):=ev(fn),

m: ceiling(alp),

v: m-alp,

df: diff(fn(x), x, m),

dff(_tau):=ev(subst(_tau, x, df)),

1/gamma(v)*

integrate(dff(_tau)/((x-_tau)^(alp-m+1)), _tau, 0, x))

The above examples can then be computed using newly defined functions by typing

the following in Maxima:

RLDif(t^2, t, 1/2, 0)

CapDif(t^2, t, 1/2)

And in both cases Maxima returns the answer:
1Maxima can be freely downloaded from the Internet. Binary packages for every major platform are

available here: http://sourceforge.net/projects/maxima/files/

15

http://sourceforge.net/projects/maxima/files/

8 t
3
2

3
√
π
.

Example 2.1.2 Compute the fractional derivative of order α = 1
3

for function f1(t) =

e5t and the fractional derivative of order α = 1
2

for function f2(t) = sin(3t).

It can be deduced, that with a = 0 the result of the operation 0D
1
3
t

(
e5t
)

will not be

an elementary function. However, taking a = −∞ we will obtain a solution using the

following Maxima command:

RLDif(%e^(5*t), t, 1/3, -inf)

The returned value is 5
1
3 e5 t and thus

−∞D
1
3
t

(
e5t
)

= 5
1
3 e5t.

With a = −∞ the definition (2.1) can be viewed as a Weyl differintegral. This

modification of the definition is also useful for periodic functions, so to compute

−∞D
1
2
t

(
sin(3t)

)
we will use the following:

RLDif(sin(3*t), t, 1/2, -inf)

The output, after simplification, is
√
6
2

(
sin(3t) + cos(3t)

)
. After applying trigonomet-

ric transformations, the final result is obtained as

−∞D
1
2
t

(
sin(3t)

)
=
√

3 sin

(
3t+

π

4

)
.

2.2 Laplace Transform

The Laplace integral transform in an essential tool in dynamic system and control

engineering. A function F (s) of the complex variable s is called the Laplace transform

of the original function f(t) and defined as

F (s) = L
[
f(t)

]
=

∫ ∞
0

e−stf(t) d t (2.7)

The original function f(t) can be recovered from the Laplace transform F (s) by ap-

plying the reverse Laplace transform defined as

16

f(t) = L −1 [F (s)
]

=
1

j2π

∫ c+j∞

c−j∞
estF (s) ds, (2.8)

where c is greater than the real part of all the poles of function F (s) [2].

We shall now define the Laplace transforms for the fractional-order operators defined

in Section 2.1.

Definition 2.2.1 (Laplace transform of the Riemann-Liouville fractional operator)

L
[
Dαf(t)

]
= sαF (s)−

m−1∑
k=0

sk
[
Dα−k−1f(t)

]
t=0

, (2.9)

where (m− 1 ≤ α < m).

Definition 2.2.2 (Laplace transform of the Caputo fractional operator)

L
[
Dαf(t)

]
= sαF (s)−

m−1∑
k=0

sα−k−1f (k)(0) , (2.10)

where (m− 1 ≤ α < m).

Definition 2.2.3 (Laplace transform of the Grünwald-Letnikov fractional operator)

L
[
Dαf(t)

]
= sαF (s). (2.11)

2.3 Fractional-order Models

A fractional-order continuous-time dynamic system can be expressed by a fractional

differential equation of the following form [2, 3]:

H(Dα0α1···αn) y(t) = G(Dβ0β1···βn)u(t), (2.12)

H(Dα0α1...αn) =
n∑
k=0

akD
αk ,

G(Dβ0β1...βn) =
m∑
k=0

bkD
βk ,

17

where ak, bk ∈ R.

In explicit form:

anD
αny(t) + an−1D

αn−1y(t) + · · ·+ a0D
α0y(t) = (2.13)

bmDβmu(t) + bm−1D
βm−1u(t) + · · ·+ b0D

β0u(t)

The system is said to be of commensurate-order if in (2.13) all the orders of derivation

are integer multiples of a base order γ such that αk, βk = kγ, γ ∈ R+. The system

can then be expressed as

n∑
k=0

akD
kγy(t) =

m∑
k=0

bkD
kγu(t). (2.14)

If in (2.14) the order is γ = 1/q, q ∈ Z+, the system will be of rational order. The

diagram with linear time-invariant (LTI) system classification is given in Figure (2.1).

Figure 2.1: Classification of LTI systems

Applying the Laplace transform to (2.13) with zero initial conditions the input-output

representation of the fractional-order system can be obtained in the form of a transfer

function:

G(s) =
Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
. (2.15)

In the case of a system with commensurate order γ, the continuous-time transfer func-

tion is given by

18

G(s) =

m∑
k=0

bk (sγ)k

n∑
k=0

ak (sγ)k
. (2.16)

Taking λ = sγ the function (2.14) can be viewed as a pseudo-rational function H(λ):

H(λ) =

m∑
k=0

bkλ
k

n∑
k=0

akλk
. (2.17)

Based on the concept of the pseudo-rational function, a state-space representation can

be established in the form:

Dγ x(t) = Ax(t) +Bu(t) (2.18)

y(t) = Cx(t) +Du(t)

The state-space model allows representation of multiple input, multiple output (MIMO)

fractional-order systems. The following equation may be used to convert the state-

space representation to a transfer function:

G(s) = C(sγI − A)−1B +D, (2.19)

where I is the identity matrix.

2.4 Fractional System Analysis

2.4.1 Stability

In order to determine stability of a fractional system given by (2.14) consider the fol-

lowing theorem [11, 3].

Theorem 2.4.1 (Matignon’s stability theorem) The fractional transfer functionG(s) =

Z(s)/P (s) is stable if and only if the following condition is satisfied in σ-plane:

19

∣∣arg(σ)
∣∣ > q

π

2
, ∀σ ∈ C, P (σ) = 0, (2.20)

where σ := sq. When σ = 0 is a single root of P (s), the system cannot be stable. For

q = 1, this is the classical theorem of pole location in the complex plane: no pole is in

the closed right plane of the first Riemann sheet.

In general, for a commensurate-order fractional-order system in the form

Dqw = f(w),

where 0 < q < 1 and w ∈ Rn the equilibrium points are calculated by solving

f(w) = 0.

The equilibrium points are asymptotically stable if all the eigenvalues λk of the Jaco-

bian matrix J = ∂f
∂w

, evaluated at the equilibrium, satisfy the condition

∣∣arg(eig(J))
∣∣ =

∣∣arg(λk)
∣∣ > q

π

2
, k = 1, 2, ..., n. (2.21)

Alternatively, the stability condition can also be evaluated from the state-space repre-

sentation of the system (2.18):

∣∣arg(eig(A))
∣∣ > q

π

2
, (2.22)

where 0 < q < 1 and eig(A) represents the eigenvalues of the state-space matrix A.

Stability regions of a fractional-order system are shown in Figure 2.2.

Remark 2.4.1 Unlike integer-order systems, a stable continuous-time fractional-order

system can have roots in the right half of the complex plane.

2.4.2 Time Domain Analysis

In the time domain it is desired to obtain a transient response of a fractional-order

dynamic system. One solution would be to use the inverse Laplace transform and the

20

I

R

πq
2

Unstable region

Stable region

Figure 2.2: LTI fractional-order system stability region for 0 < q < 1

Mittag-Leffler function proposed by Podlubny in [4]. However, this solution method

may be time consuming and tedious.

Another solution involves numerical computation of fractional-order derivatives which

is carried out by means of a revised Grünwald-Letnikov definition (2.3) rewritten as

aD
α
t f(t) = lim

h→0

1

hα

[t−ah]∑
j=0

w
(α)
j f(t− jh), (2.23)

where h is the computation step-size andw(α)
j = (−1)j

(
α
j

)
can be evaluated recursively

from

w
(α)
0 = 1, w

(α)
j =

(
1− α + 1

j

)
w

(α)
j−1, j = 1, 2, · · · . (2.24)

To obtain a numerical solution for the equation in (2.13) the signal û(t) should be

obtained first, using the algorithm in (2.23), where

û(t) = bmDβmu(t) + bm−1D
βm−1u(t) + · · ·+ b0D

β0u(t).

The time response of the system can then be obtained using the following equation:

y(t) =
1

n∑
i=0

ai
hαi

u(t)−
n∑
i=0

ai
hαi

[t−ah]∑
j=1

w
(α)
j y(t− jh)

 . (2.25)

21

2.4.3 Frequency Domain Analysis

Frequency-domain response may be obtained by substituting s = jω in (2.15). The

complex response for a frequency ω ∈ (0; ∞) can then be computed as follows:

R(ω) =
P (jω)

Q(jω)
=
bm(jω)βm + bm−1(jω)βm−1 + · · ·+ b0(jω)β0

an(jω)αn + an−1(jω)αn−1 + · · ·+ a0(jω)α0
, (2.26)

where j is the imaginary unit.

2.5 Approximation of Fractional Operators

Due to availability of well-established tools for integer-order LTI systems analysis,

the possibility of approximating the fractional model by an integer-order one is highly

desirable. Several methods are summarized in [12].

The Oustaloup recursive filter, proposed in [13], gives a very good approximation of

fractional operators in a specified frequency range and is widely used in fractional

calculus.

For a frequency range (ωb, ωh) and of order N the filter for an operator sγ, 0 < γ < 1,

is given by

Gf (s) = K
N∏

k=−N

s+ ω′k
s+ ωk

, (2.27)

where

ω′k = ωb

(
ωh
ωb

) k+N+1
2 (1−γ)

2N+1

, ωk = ωb

(
ωh
ωb

) k+N+1
2 (1+γ)

2N+1

, K = ωγh. (2.28)

A refined Oustaloup filter was proposed in [2], [5]. It is given by

sα ≈
(
dωh
b

)α(
ds2 + bωhs

d (1− α) s2 + bωhs+ dα

)
N∏

k=−N

s+ ω′k
s+ ωk

, (2.29)

where

ωk =

(
bωh
d

) α+2k
2N+1

, ω′k =

(
dωb
b

) α−2k
2N+1

. (2.30)

22

It is expected, that a good approximation using (2.29) is obtained with b = 10, d = 9,

which has been confirmed by theoretical analysis and experimentation.

Given these methods of approximating the fractional operator, a general method of

approximation a fractional-order model by an integer-order one is now possible. Recall

the property in (2.6). Thus, for fractional orders α ≥ 1 it holds

sα = snsγ, (2.31)

where n = α − γ denotes the integer part of α and sγ is obtained by the Oustaloup

approximation by using either (2.27) or (2.29), with the latter being preferred in most

cases.

2.6 Discretization

Discretization is essential in implementation of controllers. Several discretization

methods have been developed for fractional-order models. These include FIR (finite

response filter) and IIR (infinite response filter) realizations, the latter being preferred

to the former due to a lower order of this type of filter [2].

Taking into account continuous-time rational-order approximations discussed in Sec-

tion 2.5, the following method for obtaining a discrete-time model can be proposed.

1. Approximate the continuous-time fractional model by a rational-order transfer

function Gc(s) using an Oustaloup filter.

2. Use a discrete transformation with a sample period T and obtain a discrete-order

approximation Gd(z) of the fractional model.

Tustin method (or bilinear transformation method) can be used. It relates the s and z

domains with the following substitution formula:

s =
2z − 1

Tz + 1
, (2.32)

where T is the sample period. Prewarping of the critical frequencies of Gc(s) may

be required so that frequency responses of Gc(jω) and Gd(jω) are equal after the

discretization.

23

Chapter 3

Identification by Fractional Model

This chapter is devoted to research of methods of identification by a fractional-order

model. It is organized as follows. In Section 3.1 general information on system identi-

fications is provided. In Section 3.2 methods of model identification from experimental

time-domain data are given. And in Section 3.3 we take a look at identification meth-

ods using frequency-domain data.

3.1 Identification Basics

The goal of identification is to infer a dynamic system model based upon data, mea-

sured during an experiment. In general, it is necessary to obtain a relationship between

system inputs and outputs under external stimuli (input signals, disturbances) in order

to determine and predict the system behavior. A general form of a single input-single

output system with disturbances is given in Figure 3.1.

u

d

y

w

Figure 3.1: A system with input u, output y, measured disturbance d and unmeasured disturbance w

The general procedure of system identification is summarized in Figure 3.2 and con-

sists of the following stages [14].

24

1. Design the experiment. For dynamic systems it is usual to collect transient re-

sponse data in the time-domain by applying a set of predetermined input signals,

or frequency response (magnitude and phase) in the frequency domain (e.g. by

doing a frequency sweep).

2. Record the dataset based on an experiment. The collected data must be as infor-

mative as possible subject to constraints at hand.

3. Choose a set of models and/or the model structure and the criterion to fit.

4. Calculate the model using a suitable algorithm, e.g. least squares method.

5. Validate the obtained model. It is desirable to use two different datasets for

identification and validation.

6. If the model is satisfactory, use it for whatever purpose desired. Otherwise,

revise modeling/identification strategy and repeat the above steps.

A crucial step in the whole identification process is determining the amount of contri-

bution of noise and disturbances to the collected data, which may need filtering and

processing before actually being used in the identification algorithm.

Further we investigate ways to identify a system by a fractional-order model based on

time-domain and frequency-domain experiments.

3.2 Time-domain Identification

The objective of time-domain identification is to obtain a fractional model in the form

G(s) =
Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + · · ·+ b0s

β0

ansαn + an−1sαn−1 + · · ·+ a0sα0
(3.1)

from registered system input and output. Several methods of identification are avail-

able, including equation error and output error approaches, and are described in [15].

Based on these ideas, a more general approach can be used.

According to [11, 15] a commensurate-order transfer function G(s) is BIBO (bounded

input-bounded output) stable, iff

25

Figure 3.2: The system identification procedure

0 < γ < 2, (3.2)

where γ is the commensurate order, and for every sγ-pole, sk ∈ C of G(s) it holds the

stability criterion in (2.21):

∣∣arg(sk)
∣∣ > γ

π

2
.

Thus, the initial guess model may be chosen in accordance with (3.2) by selecting a

commensurate order γ. Given a fractional-order polynomial with order n the highest

differential order will then be n · γ.

Once experimental data is collected and an initial guess model is obtained (either ran-

domly or from prior knowledge) the identification problem could be restated as a prob-

lem of optimizing a set of parameters θ of model (3.1) given by

26

ap = [an an−1 · · · a0], αp = [αn αn−1 · · · α0], (3.3)

bz = [bm bm−1 · · · b0], βz = [βn βn−1 · · · β0],

where ap, bz denote pole and zero polynomial differential operator coefficients and

αp, βz denote the corresponding exponents (orders of differentiation).

If the number of optimized parameters is too high, the problem may be ill-conditioned.

One identification strategy is to choose a commensurate-order for the model and fix

the resulting fractional orders. Another involves fixing the coefficients and optimizing

the exponents. Thus, given (3.3), one can see that there is a total of nine possible

optimization parameter sets and they are as follows:

• full optimization, θ = [ap αp bz βz],

• fix orders, optimize coefficients, θ = [ap bz],

• fix coefficients, optimize orders, θ = [αp βz].

With pole polynomial fixed:

• optimize zero polynomial coefficients and orders, θ = [bp βz],

• fix orders, optimize zero polynomial coefficients, θ = bz,

• fix coefficients, optimize zero polynomial orders, θ = βz.

With zero polynomial fixed:

• optimize pole polynomial coefficients and orders, θ = [ap αz],

• fix orders, optimize pole polynomial coefficients, θ = az,

• fix coefficients, optimize pole polynomial orders, θ = αz.

These options may be useful for large-scale problems (high-order models) to ensure a

well-conditioned optimization problem.

With previous considerations, an output error method can be used with a least-square

approach. The optimization criterion will be the output error norm
∥∥e (t)

∥∥2
2

given by

27

e (t) = y (t)− ŷ (t) , (3.4)

where y(t) is the experimental output signal and ŷ(t) is the one obtained by simulation

of the identified model under the experimental input signal u(t).

3.3 Frequency-domain Identification

Several methods of identifying a fractional-order model from frequency response data

(frequency, magnitude and phase) are described in [16], [17] and are summarized be-

low.

The method proposed by Hartley and Lorenzo allows to obtain a fractional-order model

in the form

G(s) = cns
nγ + cn−1s

(n−1)γ + · · ·+ c1s
γ + c0 (3.5)

or

G(s) =
1

cnsnγ + cn−1s(n−1)γ + · · ·+ c1sγ + c0
, (3.6)

where n is the order of the polynomial and γ is the commensurate order, both of which

need to be chosen by the user. The coefficients for (3.5) c0, c1, . . . , cn are then found

by solving the following equation:


G(jω1)

G(jω2)
...

G(jωm)


=


1 (jω1)

γ (jω1)
2γ · · · (jω1)

nγ

1 (jω2)
γ (jω2)

2γ · · · (jω2)
nγ

...
...

...

1 (jωm)γ (jωm)γ · · · (jωm)γ





c0

c1

c2
...

cn


, (3.7)

where ω1, ω2, . . . , ωm are the sampling frequencies. For model in (3.6) the left-hand

side of (3.7) will have the inverse of the frequency behavior. Clearly, the second case

is more useful in practical situations.

28

Another frequency-domain identification approach is proposed by Duarte Valério and

is based on an algorithm developed by Levy. We investigate two variants of this algo-

rithm. Both variants allow to find a model in form

G(s) =
bms

mγ + bm−1s
(m−1)γ + · · ·+ b1s

γ + b0
ansnγ + an−1s(n−1)γ + · · ·+ a1sγ + 1

(3.8)

by minimizing the square norm given by

ε = G(jω)
[
an(jω)nγ + · · ·+ a1(jω)γ + 1

]
(3.9)

−
[
bm(jω)mγ + · · ·+ b1(jω)γ + b0

]
at all frequencies. The commensurate order γ as well as highest orders n, m of the

polynomials are supplied by the user.

The algorithm (as implemented in [8]) finds parameters for an experimental frequency

response given by G(jω) = R(ω) + jI(ω) by solving the equation

 A B

C D





b0
...

bm

a1
...

an


=

 e

g

 , (3.10)

where

Ak,l =

f∑
p=1

(
−<

[
(jωp)

kγ
]
<
[
(jωp)

lγ
]
−=

[
(jωp)

kγ
]
=
[
(jωp)

lγ
])

, (3.11)

k = 0 . . .m, l = 1 . . .m,

29

Bk,l =

f∑
p=1

(
<
[
(jωp)

kγ
]
<
[
(jωp)

lγ
]
Rp (3.12)

+ =
[
(jωp)

kγ
]
<
[
(jωp)

lγ
]
Ip

− <
[
(jωp)

kγ
]
=
[
(jωp)

lγ
]
Ip

+ =
[
(jωp)

kγ
]
=
[
(jωp)

lγ
]
Rp

)
,

k = 0 . . .m, l = 1 . . . n,

Ck,l =

f∑
p=1

({
=
[
(jωp)

kγ
]
Ip −<

[
(jωp)

kγ
]
Rp

}
<
[
(jωp)

lγ
]

(3.13)

+

{
−<

[
(jωp)

kγ
]
Ip −=

[
(jωp)

kγ
]
Rp

}
=
[
(jωp)

lγ
])

,

k = 1 . . . n, l = 0 . . .m,

Dk,l =

f∑
p=1

[(
R2
p + I2p

){
<
[
(jωp)

kγ
]
<
[
(jωp)

lγ
]

(3.14)

+ =
[
(jωp)

kγ
]
=
[
(jωp)

lγ
]}]

,

k = 1 . . . n, l = 1 . . . n,

ek,1 =

f∑
p=1

{
−<

[
(jωp)

kγ
]
Rp −=

[
(jωp)

kγ
]
Ip

}
, (3.15)

k = 0 . . .m,

gk,1 =

f∑
p=1

{
−<

[
(jωp)

kγ
] (
R2
p + I2p

)}
, (3.16)

k = 1 . . . n.

30

The second variant of the algorithm introduces weights to the square norm such that

ε′ = w ·G(jω)
[
an(jω)nγ + · · ·+ a1(jω)γ + 1

]
(3.17)

−
[
bm(jω)mγ + · · ·+ b1(jω)γ + b0

]
,

where weights w are frequency dependent and for frequencies ωi, i = 1 . . . f

w =


ω2−ω1

2ω2
1

, i = 1

ωi+1−ωi−1

2ω2
i

, 1 < i < f

ωf−ωf−1

2ω2
f

, i = f

(3.18)

Weights are intended to improve the quality of the approximation at low frequencies.

Additionally, an optimization problem may be stated for a set of parameters

θ =

[
γ n m

]
. (3.19)

An objective function to minimize is given by a performance index in the following

form

J =
1

nω

nω∑
i=1

∣∣∣G(jω)− Ĝ(jω)
∣∣∣2 , (3.20)

where nω is the number of frequencies in ω, G is the original plant, from which the

response was obtained, and Ĝ is the identified model.

31

Chapter 4

Fractional-order Control

In this chapter we focus on three different controller types, all of which were are ob-

tained by extending integer-order controllers by concepts of fractional calculus.

The chapter is organized as follows. In Section 4.1 a generalized version of a conven-

tional PID controller is introduced, namely the PIλDµ controller. A summary of the

fractional integrator and differentiator control actions is presented. Tuning and opti-

mization methods are also discussed. In Section 4.2 we take a look at the generaliza-

tion of a lead-lag compensator type controller to the fractional case. Finally, in Section

4.3 a modified PID controller is introduced, called the TID (Tilt-Integral-Derivative)

controller.

4.1 Fractional PID Controller

4.1.1 Introduction

The notion of a fractional PID controller was introduced by Podlubny in [18]. This

generalized controller is called the PIλDµ controller1, and has an integrator with an

order λ and a differentiator of order µ. In the same paper Podlubny demonstrated, that

the fractional-order controller had a better response than an integer-order one when

used in a control loop with a fractional-order plant. In more recent researches [19, 20]

it has been confirmed, that the fractional controller outperforms the integer-order PID

controller.
1Notation PIλDδ is also used

32

The control action of the PIλDµ controller can be expressed as follows:

u(t) = Kpe(t) +KiD
−λe(t) +KdD

µe(t), (4.1)

where e(t) is the error signal. After applying the Laplace transform to (4.1) assuming

zero initial conditions, the following equation is obtained:

Gc(s) = Kp +
Ki

sλ
+Kds

µ (4.2)

Obviously, when taking λ = µ = 1 the result is the classical integer-order PID con-

troller. With more freedom in tuning the controller, the four-point PID diagram can

now be seen as a PID controller plane, which is conveyed in Figure 4.1.

Figure 4.1: The PIλDµ controller plane

4.1.2 Effects of Fractional Control Actions

Further we briefly summarize the effects of extending the integral and derivative con-

trol actions to the fractional case [2]. These control actions are of type

C(s) = K sγ, (4.3)

γ ∈ [−1; 1] .

Let us first explore the fractional integrator with γ ∈ [−1; 0] . Under a square error

33

signal and with different orders γ and K = 1 the control action u(t) will have the

forms depicted in Figure 4.2a.

In the frequency domain by varying γ the following can be achieved:

• a constant increment in the slopes of the magnitude curve, that varies between

−20 dB/dec and 0 dB/dec,

• a constant delay in the phase plot that varies between −π/2 rad and 0 rad.

Next, the fractional differentiator is investigated with γ ∈ [0; 1]. Its control action

under a trapezoidal signal is shown in Figure 4.2b. And in the frequency domain by

varying γ the following is possible:

• a constant increment in the slopes of the magnitude that varies between 0 dB/dec

and 20 dB/dec,

• a constant delay in the phase plot that varies between 0 rad and π/2 rad.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

u(
t)

γ=0

γ=−0.5

γ=−0.7

γ=−1

(a) Fractional integrator s−γ control actions

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time [s]

u(
t)

γ=0

γ=0.5

γ=0.7

γ=1

(b) Fractional differentiator sγ control actions

Figure 4.2: Fractional integrator and derivative control actions in the time domain

Consider a comparison between a classical PID and a fractional one in the frequency

domain given in Figure 4.3 by means of a Bode diagram.

As it can be seen, introducing fractional orders for the integrator and differentiator

components of the PID controller has potential benefits due to providing more degrees

of freedom. It is expected, that fractional PID controllers will replace their classical,

integer-order variants in industrial control applications [3]. Tuning and auto-tuning

techniques play a significant role in accelerating this process.

34

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−90

−45

0

45

90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

0

20

40

60

80

100

M
ag

ni
tu

de
 (

dB
)

Classical PID

Fractional PID

Classical PID

Fractional PID

Figure 4.3: Bode diagram of a frequency response of a classical PID controller with Kp = Ki = Kd =
1 and a fractional PID controller with Kp = Ki = Kd = 1, λ = µ = 0.5.

4.1.3 Tuning and Optimization

Several methods of tuning fractional PID controllers were proposed over the years

[2, 21, 23, 24]. However, there is still no well-established, general tuning algorithm.

Nevertheless, optimization techniques may be applied to the tuning problem instead.

There are several aspects to the problem of designing a fractional PID controller via

optimization:

• the type of plant to be controlled (fractional or integer-order),

• fractional PID design specifications,

• optimization criterion,

• parameters to optimize,

• obtaining initial parameters to optimize.

A general approach is desired for optimizing a PID control loop regardless of the plant

type. However, there is a vast array of well-established tuning techniques for common

model types (e.g. FOPDT2). So if a fractional model can be approximated by a simple
2First order plus dead time

35

model to a certain degree of validity it may be used to obtain initial, integer-order

PID parameters. These parameters can then be further optimized to achieve better

performance.

Most frequently used design specifications can be derived from the frequency domain

evaluation of the open loop C(jω)G(jω), where C(jω) is the controller and G(jω) is

the plant. These specifications include:

• gain margin Gm, obtained as a difference between unity gain and gain at the

frequency where the phase angle is −180◦,

• phase margin ϕm, obtained as a difference between −180◦ and phase angle at

the gain crossover frequency.

In terms of noise and disturbance rejection, the following measures can be used.

• Complementary sensitivity function T (jω):

T (jω) =
C(jω)G(jω)

1 + C(jω)G(jω)
. (4.4)

• Sensitivity function S(jω):

S(jω) =
1

1 + C(jω)G(jω)
. (4.5)

The parameter set to optimize consists of fractional PID parameters:

θ =

[
Kp Ki Kd λ µ

]
. (4.6)

However, it may be beneficial to optimize all parameters independently, similarly to a

method discussed in Section 3.2 of Chapter 3.

Finally, the following performance criteria can be used as objective functions for opti-

mization:

• integral square error ISE =
∫ t
0
e2(t) dt,

• integral absolute error IAE =
∫ t
0

∣∣e(t)∣∣ dt,

• integral time-square error ITSE =
∫ t
0
te(t)2 dt,

36

• integral time-absolute error ITAE =
∫ t
0
t
∣∣e(t)∣∣ dt,

where e(t) = 1 − y(t), y(t) is the tuned fractional control system closed-loop step

response.

4.2 Fractional Lead-Lag Compensator

Lead-lag compensators are a well-known type of feedback controller widely used in

practice. Extending it with ideas from fractional calculus can lead to a more robust

controller.

A fractional-order lead-lag compensator has the following transfer function:

Gc(s) = Kc

(
s+ 1

λ

s+ 1
xλ

)α

= Kcx
α

(
λs+ 1

xλs+ 1

)α
, 0 < x < 1, (4.7)

where α is the fractional order of the controller, 1
λ

= ωz is the zero frequency and
1
xλ

= ωp is the pole frequency when α > 0.

When α > 0 the controller (4.7) corresponds to a fractional-order lead compensator

and when a < 0 it corresponds to a fractional lag compensator.

Taking k′ = Kcx
α another used form of the fractional-order lead-lag compensator is

obtained:

Gc(s) = k′
(
λs+ 1

xλs+ 1

)α
. (4.8)

The contribution of parameter α is such, that the lower its value, the longer the distance

between the zero and pole and vice versa so that the contribution of phase at a certain

frequency stands still. This makes the controller more flexible and allows a more robust

approach to the design. Tuning and auto-tuning techniques are discussed in [2].

It can be seen, that the form (4.8) is an implicit form of a fractional-order transfer

function. Thus it cannot be directly realized by approximation methods discussed in

Chapter 2. However, there is a workaround. Since the frequency response can be

directly obtained, a frequency identification method can be employed to implement

the fractional-order lead-lag compensator such as described in Section 3.3 of Chapter

3.

37

4.3 TID Controller

The TID (Tilt-Integral-Derivative) controller was first proposed in [25] and summa-

rized in [21]. It can be described by the following transfer function (the structure of

the TID controller is also depicted in Figure 4.4).

Gc(s) =
Kt

s
1
n

+
Ki

s
+Kds, (4.9)

where Kt/s
1
n is the Tilt type compensator and n ∈ R, n > 0, preferably n ∈ [2; 3]. It

can be seen, that the TID controller corresponds to a conventional PID controller with

proportional gain replaced by the compensator component.

Figure 4.4: TID controller structure

The motivation for this type of controller is from the consideration of Bode’s theoreti-

cally optimal loop response (see Figure 4.5). The goal of the feedback control system

is to minimize the effect of disturbances at the output of the system and to minimize

sensitivity of the closed-loop response to parameter variations of the controlled plant.

To satisfy these requirements, the feedback of the system must be maximized while

being properly weighted in frequency. This is partially achieved by introducing the

compensator component.

Figure 4.5: Bode plots for PID controlled plant and the ideal loop response

38

A comparison of a conventional PID controller frequency response and a TID con-

troller frequency response is depicted in Figure 4.6.

0

20

40

60

80

100

120
M

ag
ni

tu
de

 (
dB

)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−90

−45

0

45

90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

PID controller

TID controller

PID controller

TID controller

Figure 4.6: A comparison of the frequency response of a PID controller with Kp = 2, Ki = 1, Kd =
0.5 and a TID controller with Kt = 2, n = 3, Ki = 1, Kd = 0.5.

39

Chapter 5

FOMCON Toolbox for MATLAB

This chapter introduces the reader to the FOMCON toolbox for MATLAB in which

all the major features discussed in previous chapters are implemented. The chapter is

organized as follows. In Section 5.1 the reader is presented with an overview of the

FOMCON toolbox. Its relationship with other existing toolboxes and motivation for

its development are also given. In Section 5.2 an overview of the toolbox features is

presented. Finally, in Section 5.3 notations used in the user manual in Chapter 6 are

provided.

5.1 Introduction

FOMCON stands for “Fractional-Order Modeling and Control”. It is a MATLAB tool-

box and is built upon an existing mini toolbox called FOTF (Fractional-Order Transfer

Functions), the source code for which is provided in literature [2, 3, 5].

The toolbox was developed and tested in MATLAB v. 7.7. However, most of the

features are backwards-compatible and should work in earlier releases of MATLAB

(v. 7.4-7.6).

The basic motivation for developing of FOMCON was the desire to obtain a set of

useful and convenient tools to facilitate the research of fractional-order systems. This

involved writing convenience functions (e.g. the polynomial string parser) and building

graphical user interfaces (GUI’s) to improve the general workflow. However, a full

suite of tools was also desired due to certain limitations in existing toolboxes. Thus

40

the basic functionality of the toolbox was extended with advanced features (such as

fractional-order system identification and PIλDµ design).

As previously mentioned, there exist other MATLAB toolboxes dedicated to fractional-

order control, such as CRONE and NINTEGER. These mostly focus on novel control

strategies (such as the CRONE control), while FOMCON aims at extending classical

control schemes with concepts of fractional calculus. FOMCON is linked to the other

toolboxes and uses some of their functionality. A diagram showing toolbox relations

to FOMCON is given in Figure 5.1.

Figure 5.1: MATLAB fractional-order calculus oriented toolbox relations to FOMCON

With all previous considerations, the motivations for developing FOMCON can now

be established.

• It is a product suitable for both beginners and more demanding users due to

availability of graphical user interfaces and advanced functionality.

• It focuses on extending classical control schemes with concepts of fractional-

order calculus.

• It can be viewed as a “missing link” between CRONE and NINTEGER.

• With the Simulink blockset the toolbox aims at a more sophisticated modeling

approach.

• Due to availability of source code the toolbox can be ported to other platforms,

such as Scilab or Octave (some limitations and/or restrictions may apply).

41

Further, an overview of the toolbox and its features is presented.

5.2 Overview

In FOMCON the main object of analysis is the fractional-order transfer function given

by (2.15). The toolbox currently focuses on the SISO (single input-single output), LTI

(linear time-invariant) systems.

The FOMCON toolbox consists of the following modules:

• Main module (fractional system analysis).

• Identification module (system identification in the time and frequency domains).

• Control module (fractional PID design, tuning and optimization tools as well as

some additional features).

All the modules are interconnected and can be accessed from the graphical user inter-

face as depicted in Figure 5.2.

Figure 5.2: FOMCON module relations (name of corresponding function to open the GUI is given in
brackets)

A Simulink blockset is also provided in the toolbox allowing more complex modeling

tasks to be carried out. General (modular) approach to block construction was used

where applicable. The following blocks are currently realized:

42

• General fractional operator.

• Fractional integrator and differentiator.

• Fractional transfer function (with discrete realization).

• PIλDµ controller (with discrete realization).

• TID controller.

The FOMCON toolbox relies on the following MATLAB products:

• Control system toolbox, required for most features.

• Optimization toolbox, required for time domain identification and integer-order

PID tuning for common process model approximation.

Several other tools are used directly (without any change). These tools are included in

the toolbox as per the GPL license:

• optimize() function.

• Several NINTEGER toolbox frequency domain identification functions.

It is also possible to export fractional-order systems to the CRONE toolbox format

(this feature requires the object-oriented CRONE toolbox to be installed).

5.3 Used Notations

Further follows a list of notations used throughout the user manual in Chapter 6.

The MATLAB logo designates a paragraph with additional informa-

tion about the implementation of certain features in MATLAB and/or

SIMULINK.

43

A paragraph decorated with an “i” sign contains additional information

about features and their possible usages.

The warning sign indicates important information about certain fea-

tures, such as significant tips, potential problems and software limita-

tions.

44

Chapter 6

FOMCON User Manual

This chapter has the following structure. Sections 6.1 through 6.4 are organized as a

user manual with illustrative examples in the end of every section.

6.1 System Analysis Module

The system analysis module is the main module of the FOMCON toolbox. It serves as

a foundation for fractional-order control systems engineering and hence for all other

modules.

6.1.1 The FOTF Object

The basic object used to analyze fractional-order systems is a fractional-order transfer

function (FOTF) in the form (2.15). Analysis is carried out using overloaded Control

System toolbox functions.

In its 7.x version tree MATLAB has enhanced support for object-

oriented programming. It is thus beneficial to implement the fractional-

order transfer function as a class (fotf) and write functions overload-

ing those of Control System toolbox for this particular object type.

These functions need to be placed in a folder beginning with the “@”

symbol (@fotf in this case). This is the very idea behind the FOTF

toolbox which served as a base for FOMCON.

45

Further a list of functions dealing directly with the fotf object is given.

6.1.1.1 Function fotf()

SYNTAX

G = fotf(a, na, b, nb, delta)

G = fotf(b)

G = fotf(G1)

G = fotf(’s’)

INPUT ARGUMENTS

• a, na, b, nb — fractional-order transfer function real coefficient and exponent

vectors such that

G(s) =
bks

nbk + bk−1s
nbk−1 + · · ·+ b0s

nb0

alsnal + al−1snal−1 + · · ·+ a0sna0
,

• δ (optional) — input-output delay (positive real number) in seconds such that

G(s) =
Z(s)

P (s)
· e−δ·s,

• G1 — an object of type fotf or tf,

• ′s′ — a string containing the “s” character.

OUTPUT ARGUMENTS

• G— the resulting fotf object, a LTI system given by the fractional-order trans-

fer function.

DESCRIPTION

This function is the initializing method for the fotf object. The object parameters

can later can be set or retrieved via dot notation. An overload function display() is

used to display the object in MATLAB.

46

If the “s” character is supplied as a single argument, a fotf(1,0,1,1) object is

returned. This could be used as a basic building block for more complex systems.

REMARKS

It could be more convenient to input models into MATLAB using either the built-in

parser with overloaded operation methods, the slightly more advanced string parser or

by means of the graphical user interface.

EXAMPLES

In order to input a fractional-order transfer function G(s) = s0.5+1
2s1.7+s0.3−5 · e

−5s into

MATLAB the following statement can be used:

G = fotf([2 1 -5], [1.7 0.3 0], [1 1], [0.5 0], 5)

The object is then displayed in MATLAB as

Fractional-order transfer function:

s^{0.5}+1

------------------ exp(-5s)

2s^{1.7}+s^{0.3}-5

To change the zero polynomial to 7.5s0.5 + 2, the following command could be used:

G.b = [7.5 2]

and the object is displayed as

Fractional-order transfer function:

7.5s^{0.5}+2

------------------ exp(-5s)

2s^{1.7}+s^{0.3}-5

6.1.1.2 Function newfotf()

SYNTAX

47

G = newfotf(zero_s, pole_s, delta)

G = newfotf(zero_s, [a na], delta)

G = newfotf([b nb], pole_s, delta)

G = newfotf([b nb], [a na], delta)

INPUT ARGUMENTS

• zeros — fractional zero polynomial string,

• poles — fractional pole polynomial string,

• δ (optional) — input-output delay in seconds,

• [a na] — pole polynomial coefficient and exponent vector,

• [b nb] — zero polynomial coefficient and exponent vector.

OUTPUT ARGUMENTS

• G — the resulting fotf object.

DESCRIPTION

This function implements a simple string parser to obtain the desired fractional-order

transfer function. It may be more convenient to use it instead of the fotf() method.

EXAMPLE

In order to supply the previously discussed transfer function G(s) = s0.5+1
2s1.7+s0.3−5 · e

−5s

into MATLAB the following command could be used

G=newfotf(’s^0.5+1’, ’2s^1.7+s^0.3-5’, 5);

and the same result as above is obtained.

6.1.1.3 Block Interconnection Functions

The functions that realize fotf block interconnections are grouped together in Table

6.1 with syntax and corresponding comments.

48

Functions plus() and feedback() do not support fractional-order

transfer functions with different time delays.

Table 6.1: fotf block interconnection functions

FUNCTION DESCRIPTION SYNTAX

feedback() System negative feedback feedback(G1, G2)

inv() System inverse
1

G
inv(G)

minus() System subtraction (parallel connection) G1 - G2

mpower() Power of given system (n ∈ Z) G1^n

mrdivide() System division (series connection) G1 / G2

mtimes() System multiplication (series connection) G1 * G2

plus() System addition (parallel connection) G1 + G2

uminus() Unary minus -G

EXAMPLE

Let us assume that a fractional system is given by a block diagram in Figure 6.1, where:

G1(s) =
1

s0.5 + 1
, G2(s) =

s0.3 + 1

s2.5 + s+ 1
,

G3(s) =
2

s0.1 + 1
, G4(s) =

1

15s+ 1
.

To obtain a full model G(s) the following MATLAB commands need to be used:

G1 = fotf([1 1], [0.5 0], 1, 0);

G2 = fotf([1 1 1], [2.5 1 0], [1 1], [0.3 0]);

G3 = fotf([1 1], [0.1 0], 2, 0);

G4 = fotf([15 1], [1 0], 1, 0);

G = feedback(G1*(G2-G3), G4);

49

The system is then obtained as

G(s) =
−30s3.5 − 2s2.5 − 30s2 + 15s1.4 + 15s1.3 + 15s1.1 − 17s+ s0.4 + s0.3 + s0.1 − 1

15s4.1 + 15s4 + 15s3.6 + 15s3.5 + s3.1 + s3 + 16s2.6 + 14s2.5 + 15s2.1

+15s2 + 16s1.6 + 16s1.5 + 16s1.1 + 14s+ s0.6 + s0.5 + s0.4 + s0.3 + 2s0.1

It can be seen from this example, that from relatively simple initial systems a fairly

complicated fractional-order transfer function was obtained.

Figure 6.1: Example system interconnection

6.1.1.4 Trimming Functions

SYNTAX

G1 = trunc(G, p_ex, p_cf)

G1 = round(G, p_ex, p_cf)

INPUT ARGUMENTS

• G — a fotf object,

• pex — exponent trimming precision,

• pcf (optional) — coefficient trimming precision.

OUTPUT ARGUMENTS

• G1 — trimmed fotf object.

50

DESCRIPTION

The trimming functions are used to either truncate or round the transfer function ex-

ponents and coefficients to the given precision. This may be desired when analyzing

commensurate-order systems where the commensurate-order is too low and as a con-

sequence the rational-order pseudo transfer function order is too high.

EXAMPLES

Consider a system given by G(s) = 1
15s1.3442+5s0.44987−15 . Suppose the desired precision

for the differentiation orders is pex = 0.01. Then truncating this system via

trunc(G, 1e-2)

will result in

Fractional-order transfer function:

1

15s^{1.34}+5s^{0.44}-15

while rounding using

round(G, 1e-2)

will return

Fractional-order transfer function:

1

15s^{1.34}+5s^{0.45}-15

6.1.2 Stability Analysis

6.1.2.1 Function isstable()

SYNTAX

[K, q, err, apol] = isstable(G, doPlot)

51

INPUT ARGUMENTS

• G — the fotf system for which the stability condition is evaluated,

• doP lot (optional) — boolean value, if set to true — the stability diagram is

plotted.

OUTPUT ARGUMENTS

• K — boolean value, if true then the system given by G is stable,

• q — transfer function pole polynomial commensurate order,

• err — error norm,

• apol — minimum stability condition criterion.

DESCRIPTION

This function realizes the algorithm described in Subsection 2.4.1. The system is

deemed stable if

apol > q
π

2
,

where apol = min(
∣∣arg(p)

∣∣) and p is a vector containing the roots of the pseudo-

rational polynomial. To keep the order of the polynomial from becoming too high, the

minimum allowed commensurate-order is q = 0.01. If the system commensurate-order

is smaller, the orders are automatically truncated.

If doP lot is set to true, a diagram is plotted and is populated with poles of the fractional-

order system G. The shaded area represents the unstable region. If any poles are inside

it, the system is not stable.

6.1.3 Time Domain Analysis

6.1.3.1 Function lsim()

SYNTAX

52

y = lsim(G, u, t)

INPUT ARGUMENTS

• G — fotf system to be simulated,

• u — input signal u(t) vector,

• t — time vector, consisting of regularly spaced time samples such that t =

[0; tfinal] with constant step d t.

OUTPUT ARGUMENTS

• y — row vector containing system response y(t) under input signal u(t) at times

given in t.

DESCRIPTION

This function uses the Grünwald-Letnikov definition based computing algorithm de-

scribed in Subsection 2.4.2.

Since this function uses recursive methods to compute the time re-

sponse, it may take some time for simulating a large number of points.

For such a case it may be desired to show a progress bar. In order to

show it a command show_pbar on can be typed in MATLAB com-

mand window.

Since fixed-step computation is used, it may be required to increase the

number of simulation points, i.e. take a smaller time step to achieve the

desired level of accuracy.

6.1.3.2 Function step()

SYNTAX

53

y = step(G, t)

INPUT ARGUMENTS

• G — fotf system to be simulated,

• t (optional) — vector with time samples.

OUTPUT ARGUMENTS

• y — row vector containing system response y(t) under input signal u(t) = 1 at

times given in t.

DESCRIPTION

Computes the step response of a system given by G using lsim(). If input argument

t is omitted, a simple auto-ranging procedure is used.

6.1.3.3 Function impulse()

SYNTAX

y = impulse(G, t)

INPUT ARGUMENTS

• G — fotf system to be simulated,

• t (optional) — time vector.

OUTPUT ARGUMENTS

• y — row vector containing system response y(t) under an impulse signal at times

given in t.

DESCRIPTION

Computes the impulse response of a system given by G using lsim(). If input argu-

ment t is omitted, a default range of t = [0; 100] is used with step of 0.1.

54

6.1.4 Frequency Domain Analysis

6.1.4.1 Function freqresp()

SYNTAX

r = freqresp(G, w)

INPUT ARGUMENTS

• G — fotf system for which to obtain the complex frequency response,

• ω — frequency vector in rad/s at which to evaluate G(jω).

OUTPUT ARGUMENTS

• r — column vector containing complex frequency response of system G(jω) at

frequencies given in ω.

DESCRIPTION

Computes the complex frequency response of system G as described in Subsection

2.4.3. Frequency vector ω can be obtained by using the MATLAB logspace()

function.

6.1.4.2 Function bode()

SYNTAX

[mag, ph] = bode(G, w)

[mag, ph, w] = bode(G)

H = bode(G)

H = bode(G, w)

bode(G)

bode(G, w)

INPUT ARGUMENTS

• G — fotf system for which to obtain the Bode plot parameters,

55

• ω — frequency vector in rad/s at which to evaluate G(jω).

OUTPUT ARGUMENTS

• mag — response magnitude at ω,

• ph — response phase in degrees at ω,

• H — MATLAB frd object.

DESCRIPTION

Computes the complex response of system G first using freqresp() and internally

converts the resulting response to a frd object, which is then used to obtain the re-

quired parameters by passing it to the bode() function of System Control toolbox.

If no output argument is specified, plots the Bode diagram.

6.1.4.3 Function nyquist()

SYNTAX

nyquist(G, w)

INPUT ARGUMENTS

• G — fotf system for which to draw the Nyquist diagram,

• ω — frequency vector in rad/s at which to evaluate G(jω).

DESCRIPTION

Plots the Nyquist diagram for system G. Uses bode() to obtain the frd object and

then passes it to the Control System toolbox function nyquist() to draw the plot.

6.1.4.4 Function nichols()

SYNTAX

56

nichols(G, w)

INPUT ARGUMENTS

• G — fotf system for which to draw the Nichols diagram,

• ω — frequency vector in rad/s at which to evaluate G(jω).

DESCRIPTION

Plots the Nichols diagram for system G. Similarly to nyquist(), uses bode()

to obtain the frd object and then passes it to the Control System toolbox function

nichols() to draw the plot.

6.1.4.5 Function margin()

SYNTAX

[Gm, Pm, w_cg, w_cp] = margin(G)

[Gm, Pm, w_cg, w_cp] = margin(mag, phase, w)

INPUT ARGUMENTS

• G — fotf system for which to obtain the stability margins,

• mag — frequency response magnitude,

• ph — frequency response phase (in degrees),

• ω — frequency vector in rad/s.

OUTPUT ARGUMENTS

• Gm — gain margin,

• Pm — phase margin,

• ωcg — gain crossover frequency in rad/s,

• ωcp — phase crossover frequency in rad/s.

57

DESCRIPTION

This function computes the open-loop system G stability margins and associated fre-

quencies. It uses Control System toolbox margin() function with the obtained (or

given) frequency response.

6.1.5 Fractional-order System Approximation

6.1.5.1 Function oustapp()

SYNTAX

Z = oustapp(G, w_b, w_h, N, method)

INPUT ARGUMENTS

• G — fractional-order transfer function (fotf object) to approximate,

• ωb (optional) — lower frequency bound in rad/s, default is ωb = 0.001,

• ωh (optional) — higher frequency bound in rad/s, default is ωh = 1000,

• N (optional) — order of approximation, default is N = 5,

• method (optional) — method of approximation, can be ′oust′ for the Oustaloup

filter or ′ref ′ for the refined Oustaloup filter, default is ′oust′.

OUTPUT ARGUMENTS

• Z — MATLAB zpk object containing the approximated continuous-time integer-

order filter.

DESCRIPTION

Computes an integer-order continuous Oustaloup filter approximation of the fractional-

order transfer function given by G as per the algorithms in Section 2.5. The approxi-

mation is only valid in the specified frequency range ω = [ωb; ωh].

58

EXAMPLE

Consider a fractional-order operator s0.5. To approximate it by a refined Oustaloup

filter in a frequency range ω = [0.01, 100] with order N = 2 the following command

can be entered:

z = oustapp(fotf(’s’)^0.5, 1e-2, 1e2, 2, ’ref’)

The following filter is obtained:

18.9737 s (s+ 111.1)(s+ 25.12)

G(s) =
×(s+ 3.981)(s+ 0.631)(s+ 0.1)(s+ 0.01585)

(s+ 222.2)(s+ 63.1)(s+ 10)(s+ 1.585)
.

×(s+ 0.2512)(s+ 0.03981)(s+ 0.0045)

6.1.5.2 Object fsparam()

SYNTAX

p = fsparam(G, method, w, N)

INPUT ARGUMENTS

• G — the fotf plant to be included in the simulation structure,

• method (optional) — approximation method, can be either ′oust′ (default) or
′ref ′,

• ω (optional) — approximation frequency range in rad/s, default is ω = [0.001; 1000],

• N (optional) — approximation order, default is N = 5.

OUTPUT ARGUMENTS

• p — fractional-order simulation parameter structure.

DESCRIPTION

This is a utility object used to set fractional-order transfer function Oustaloup filter

approximation parameters for simulation and is used by other toolbox functions.

59

METHODS

Table 6.2: fsparam object methods

METHOD DESCRIPTION SYNTAX

oustapp() Get Oustaloup filter approxima-
tion of fractional-order plant as per
fsparam object properties

Z = oustapp(p)

6.1.6 Object Conversion Functions

Currently there is two kinds of object conversion functions present in FOMCON tool-

box :

• Conversion of fotf to FOMCON fractional-order state space system object,

• Conversion of fotf to the object-oriented CRONE toolbox objects.

These functions are summarized in Table 6.3.

Table 6.3: fotf conversion functions

FUNCTION DESCRIPTION SYNTAX

tf2ss() Convert to fractional-order state-
space object foss

sys1 = tf2ss(G)

tf2ss_c() Convert to fractional-order state-
space object frac_ss (CRONE)

sys1 = tf2ss_c(G)

tf2tf_c() Convert to fractional-order trans-
fer function frac_tf (CRONE)

G1 = tf2tf_c(G)

REMARKS

The functions tf2ss_c() and tf2tf_c() require the object-oriented CRONE

toolbox to be installed.

EXAMPLES

Consider a system given by G(s) = s0.5+1
2s2.5+5s0.5+3.5

. To convert it to a fractional-order

state-space object the following commands can be used:

60

G = newfotf(’s^{0.5}+1’,’2s^{2.5}+5s^{0.5}+3.5’);

s1 = tf2ss(G);

A foss object is then returned with the following properties:

A =



0 0 0 −2.5 −1.75

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


, B =



1

0

0

0

0


,

C =

[
0 0 0 0.5 0.5

]
, D = 0, q = 0.5,

WhereA, B, C, D are fractional-order state-space matrices and q = γ is the commensurate-

order in (2.18).

To convert this system into a CRONE fractional-order transfer function the following

can be entered in MATLAB command-line:

G1 = tf2tf_c(G)

MATLAB then returns the frac_tf object:

Frac_tf transfer function :

(s^0.5 + 1)

(2 s^2.5 + 5 s^0.5 + 3.5)

6.1.7 Graphical User Interface

6.1.7.1 Function fotf_gui()

SYNTAX

fotf_gui

61

DESCRIPTION

The graphical user interface for the main module is called FOTF Viewer . It is shown

in Figure 6.2. The user interface is divided into two panels.

Figure 6.2: FOTF Viewer graphical user interface

The left panel, entitled Fractional-order transfer functions, contains a list of fotf

objects that currently exist in the base workspace (the list can be refreshed by clicking

the Refresh button). It also has means for adding new objects, editing the existing

ones and deleting unneeded objects. The export feature has five options for exporting

fotf objects:

• an Oustaloup filter,

• a refined Oustaloup filter,

• a fractional state-space (foss object),

• a fractional transfer function (frac_tf CRONE object),

• a fractional state-space (frac_ss CRONE object).

For the first two options it is possible to automatically run the Control System toolbox

tool LTI Viewer right after the export is complete. In order to do this, one should tick

the Automatically launch LTI Viewer checkbox.

62

The System analysis panel on the right comprises the following features: it allows

checking fractional-order system stability, simulating it in the time domain and ana-

lyzing the frequency response in the frequency domain. Some helpful dialogs are also

included for convenience.

The Tools menu is used to access other graphical user interfaces:

• time-domain identification tool (fotfid),

• frequency-domain identification tool (fotfrid),

• fractional PID design tool (fpid).

The currently selected system in the fotf list will be used for the PIλDµ controller

design.

6.1.8 System Analysis Examples

Example 6.1.1 Consider a dynamic system, defined by the following fractional-order

differential equation:

2D3.501y(t) + 3.8D2.42y(t) + 2.6D1.798y(t) + 2.5D1.31y(t) + 1.5y(t) =

−2D0.63u(t) + 4u(t).

By applying the Laplace transform with zero initial conditions, the corresponding

fractional-order transfer function is obtained as

G(s) =
−2s0.63 + 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5
.

In order to analyze this system, the graphical user interface described in Subsection

6.1.7 could be used. After launching it by typing

fotf_gui

it is possible to add the fractional-order transfer function by pressing the Add... button.

A dialog will pop up. The system workspace name, transfer function polynomials and

63

input-output delay can now be entered as shown in Figure 6.3. After pressing the OK

button the system will be saved to workspace under a variable name “G” and will

appear in the GUI system list. To analyze it one first needs to select this system in the

list.

Figure 6.3: Create new FO transfer function dialog example

To test this system for stability one would press the Stability test button located in the

right panel. The stability condition analysis will then be carried out. A diagram with

system poles will be drawn (see 6.4a Figures and 6.4b) and an information dialog will

be shown with the result (see Figure 6.4c). Additional information will also be written

into the MATLAB command window.

(a) System poles (b) Zoomed plot with unstable area

(c) Stability analysis result

Figure 6.4: System G stability analysis example

64

The minimum commensurate order allowed for stability analysis is q = 0.01. Thus, in

order to determine system stability the orders are truncated and for this particular task

the system becomes

G′(s) =
−2s0.63 + 4

2s3.5 + 3.8s2.42 + 2.6s1.79 + 2.5s1.31 + 1.5
.

It can be seen, that in this case the system is deemed stable.

The step response in range of t = [0; 70] with time step d t = 0.01 is given in Figure

6.5. This result is obtained by typing 0:0.01:70 in the t vector textbox in the Time

domain subpanel and pressing the Step button. It can be seen, that the system shows

damped oscillation under the step signal.

0 10 20 30 40 50 60 70
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time [sec]

A
m

pl
itu

de

Figure 6.5: Step response of system G

Consider a fractional controller for this system in the form

Gc = 0.18 +
0.29

s0.93
+ 1.14s1.06.

In order to input it into MATLAB the following can be typed in the command line:

s = fotf(’s’); Gc = 0.18+0.29/s^0.93+1.14*s^1.06;

Now, consider two system compositions, where GCol is the open-loop system and

GCcl is the closed-loop control system:

GCol = G * Gc;

GCcl = feedback(G*Gc, 1);

Clicking Refresh in the left panel of the FOTF Viewer will update the list in which

all three of the newly defined systems should be present. Let us plot a Bode diagram

65

for the open-loop system GCol. This can be done by clicking the Bode button in

the Frequency domain subpanel. The obtained frequency response (with associated

stability margins) is depicted in Figure 6.6a. Also consider a simulation of the control

system with a set value of SV = 5 and in the range t = [0; 50] with d t = 0.01. The

result is shown in Figure 6.6b.

Bode Diagram

Frequency (rad/sec)

−150

−100

−50

0

50

100

System: H1
Gain Margin (dB): 6.74
At frequency (rad/sec): 1.63
Closed Loop Stable? Not known

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−2

10
0

10
2

10
4

−360

−315

−270

−225

−180

−135

−90

−45

System: H1
Phase Margin (deg): 64.6
Delay Margin (sec): 2.01
At frequency (rad/sec): 0.562
Closed Loop Stable? Not knownP

ha
se

 (
de

g)

(a) Open-loop frequency response

0 10 20 30 40 50
−1

0

1

2

3

4

5

6

Time [sec]

A
m

pl
itu

de

(b) Closed-loop simulation

Figure 6.6: G1 control system analysis

Example 6.1.2 For this example consider a dynamic model of a heating furnace dis-

cussed in [22, 23] given by a differential equation

a2D
αy(t) + a1D

βy(t) + a0y(t) = u(t),

with α = 1.31, β = 0.97, a2 = 14994, a1 = 6009.5, a0 = 1.69. In the Laplace

domain, assuming zero initial conditions, the system is described by a fractional-order

transfer function

G1(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
.

We shall examine Oustaloup filter approximations of this fractional system. Converting

the fotf system into a zpk object is possible from within the FOTF Viewer via the

export utility. For example, let us create two filters, an Oustaloup filter Z1 and a refined

Oustaloup filter Z2with the default parameters (ω = [10−4; 104], N = 5) and compare

the resulting system step response (at t = [0; 35000] with d t = 0.5) and frequency

response characteristics (Figures 6.7a and 6.7b respectively).

66

From this example it can be clearly seen that only the refined Oustaloup filter proposed

in [5] provides a valid approximation of the fractional-order system than the Oustaloup

filter with the same approximation parameters. However, it is also possible to obtain a

better approximation for this particular system with the Oustaloup filter by shifting the

frequency range to ω = [10−6; 102].

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Step Response

Time (sec)

A
m

pl
itu

de

Grunwald−Letnikov

Oustaloup filter

Refined Oustaloup filter

(a) Step response comparison

10
−5

10
0

10
5

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

Oustaloup filter

Refined Oustaloup filter

Original plant

Oustaloup filter

(b) Frequency response comparison

Figure 6.7: Oustaloup and refined Oustaloup filter approximations of system G1

6.2 System Identification Module

The following functions provide means for time-domain and frequency-domain system

identification by a fractional-order transfer function. Identification and validation data

is given by specific data structures discussed in each subsection.

6.2.1 Time Domain Identification

6.2.1.1 Object fidata()

SYNTAX

id = fidata(y, u, t)

INPUT ARGUMENTS

• y — observed system output signal vector y(t),

67

• u — observed system input signal vector u(t),

• t — either a single value (sampling interval) or a sampling time vector, in sec-

onds.

OUTPUT ARGUMENTS

• id — time-domain identification data structure containing the correctly format-

ted experimental data.

DESCRIPTION

This object is used to contain recorded identification information. It is used by the

time-domain identification function fid().

The supplied data is always checked first, ensuring equally sized column vectors. If

the input vectors are not equally sized, then the following procedure will occur:

• Check length of y against length of u. If not equal, extend or trim u. Extend-

ing involves duplicating the last value of vector u until vector lengths match.

Trimming cuts off the redundant part of u from the end of the vector.

• Check length of u against length of t. If not equal, extend or trim t. Extending

populates the t vector by using the time-step obtained from previous values until

vector lengths match. Otherwise the time vector is trimmed.

In case of unequal vector lengths a warning is always issued.

If t is given by a sampling interval, the time vector is built to match the length of vector

u starting with zero time, i.e. t = 0.

68

METHODS

Table 6.4: fidata object methods

METHOD DESCRIPTION SYNTAX

plot() Plots the identification/validation
data

plot(id)

validate() Validates model given by G by
simulating it under validation data.
A vector err = yG − yid is re-
turned. If the output argument is
omitted, plots the validation dia-
gram.

err =
validate(id, G)

6.2.1.2 Function fid()

SYNTAX

[a,na,b,nb,Gid] = fid(fs, idd, fp, cl, el, type, op)

[a,na,b,nb,Gid] = fid(G, idd, fp, cl, el, type, op)

INPUT ARGUMENTS

• fs — fractional-order simulation parameter object fsparam, containing both

initial guess model and Oustaloup filter approximation parameters,

• G — fractional-order transfer function initial guess model,

• idd — time-domain identification data object fidata,

• fp (optional) — option to fix either fractional-order polynomial during identifi-

cation, it should be a vector containing two boolean values in form [bfix afix],

where either can be set to true or false, if bfix = afix = 1 no identification

will be conducted and the initial guess will be immediately returned, defaults to

[0 0],

• cl (optional) — coefficient search limits in form of a vector [cmin cmax], to

suppress any limits, an empty matrix [] should be supplied, which is also the

default setting,

69

• el (optional) — exponent search limits in form of a vector [emin emax], an

empty matrix will suppress any limits, and it is the default setting,

• type (optional) — identification type, which can be ′n′ for free identification (all

model parameters are optimized, default setting), ′c′ is used to fix the polynomial

coefficients and ′e′ — to fix polynomial exponents,

• op (optional) — additional optimization options given by a MATLAB optimset

object, defaults to setting the display of iterations during the optimization pro-

cess.

OUTPUT ARGUMENTS

• a, na, b, nb — identified fotf object parameters,

• Gid — the corresponding fotf object.

DESCRIPTION

This function tries to identify a system by a fractional-order transfer function as de-

scribed in Section 3.2. A non-linear least-squares method is employed for optimization

by means of function lsqnonlin(), minimizing the output-error. The error vector

is obtained by continuously simulating the identified system in the time domain.

The simulation type is determined by the first argument. If it is a fotf object,

Grünwald-Letnikov simulation will be used, while if it is a fsparam structure, Ous-

taloup filter approximations are used with Control System toolbox function lsim()

to obtain the response. The latter may improve identification speed when identifying

complex models by a large experimental dataset.

The choice of initial model is very important because this determines

the amount of parameters to optimize. Selecting different fix options

and limiting the range of parameter search via limits may improve the

result.

70

REMARKS

This function requires the MATLAB Optimization toolbox.

6.2.2 Frequency Domain Identification

6.2.2.1 Object ffidata()

SYNTAX

id = ffidata(mag, phase, w)

id = ffidata(r, w)

INPUT ARGUMENTS

• mag — frequency response magnitude vector in dB,

• phase — frequency response phase angle vector in degrees,

• r — complex frequency response vector,

• ω — sampling frequencies vector in rad/s.

OUTPUT ARGUMENTS

• id— frequency-domain identification data structure containing the correctly for-

matted experimental data.

DESCRIPTION

The ffidata object contains the recorded frequency response data used for frequency-

domain system identification by fractional model. Input arguments are always checked

first, ensuring that these arguments are column vectors. Vectors with multiple dimen-

sions are squeezed by using MATLAB’s squeeze() function.

71

METHODS

Table 6.5: ffidata object methods

METHOD DESCRIPTION SYNTAX

bode() Plots the identification/validation
Bode diagram.

bode(id)

validate() Validates model given by G by
comparing the frequency response
to the experimental one. Magni-
tude (errm) and phase angle (errp)
error vectors are returned. If
the output arguments are omitted,
plots the validation diagram.

[err_m, err_p] =
validate(id, G)

6.2.2.2 Function ffid()

SYNTAX

[a,na,b,nb,Gid,J] = ffid(idd, q, ord, method)

INPUT ARGUMENTS

• idd — frequency-domain identification data object ffidata,

• q — identified model (fractional-order transfer function) commensurate order

such that 0 < q < 2,

• ord — a vector containing desired polynomial orders in form [n; m], where n is

the pole polynomial order and m is the zero polynomial order, for method ′h′ a

single value n is required,

• method (optional) — identification method string, can be ′h′ for Hartley method,
′l′ for Levy method or ′v′ for Vinagre method (default).

OUTPUT ARGUMENTS

• a, na, b, nb — identified fotf object parameters,

• Gid — the corresponding fotf object,

• J — identification error index.

72

DESCRIPTION

The ffid() function uses the algorithms described in Section 3.3. The NINTEGER

toolbox implementation of the corresponding functions hartley(), levy() and

vinagre() is used directly.

For the Hartley method the identified model has the form

G(s) =
1

cnsnq + cn−1s(n−1)q + · · ·+ c1sq + c0

while with Levy and Vinagre methods the model is identified in the form

G(s) =
bms

mq + bm−1s
(m−1)q + · · ·+ b1s

q + b0
ansnq + an−1s(n−1)q + · · ·+ a1sq + 1

,

for both cases n, m are the pole and zero polynomial orders and q is the commensurate

order of the system.

The identification error index has the following form

J =
1

nω

nω∑
i=1

∣∣∣G(jω)− Ĝ(jω)
∣∣∣2 .

REMARKS

The required functions of NINTEGER toolbox are included in FOMCON without

modification.

6.2.2.3 Function ffid_bf()

SYNTAX

[q,n,m,Gid,J] = ffid_bf(idd, method, init, nord, maxiter)

INPUT ARGUMENTS

• idd — frequency-domain identification data object ffidata,

• method (optional) — identification method, can be either ′l′ for Levy’s method

(default) or ′v′ for Vinagre’s method,

73

• init (optional) — initial guess vector in the form [q nm], where q is the com-

mensurate order, n is the initial pole polynomial order, m is the initial zero poly-

nomial order, default is [1 1 1],

• nord (optional) — maximum polynomial order, default is 10,

• maxiter (optional) — maximum allowed iterations, default is set to unlimited.

OUTPUT ARGUMENTS

• q — found optimal system commensurate order,

• n, m — found optimal system fractional pole and zero polynomial orders,

• Gid — identified model given by fotf object,

• J — computed error index.

DESCRIPTION

This function searches for a best fit, that is for optimal parameters [q n m] for

identifying a fractional-order model G by minimizing the error index J . Due to the

currently used search algorithm, a local solution may be found, so it may be required

to manually try different sets of initial parameters until a satisfying result is obtained.

REMARKS

The optimize() function is included with FOMCON toolbox.

6.2.3 Graphical User Interfaces

6.2.3.1 Function fotfid()

SYNTAX

fotfid

74

DESCRIPTION

This is the graphical user interface called FOTF Time-domain Identification Tool . It

serves as the front-end for the fid() function. It is shown in Figure 6.8.

Figure 6.8: FOTF Time-domain Identification Tool user interface

The Simulation parameters panel allows selecting the preferred system simulation

type. This includes the following:

• Grünwald-Letnikov evaluation of fractional derivatives.

• Oustaloup filter approximation.

• Refined Oustaloup filter approximation.

The last two options require setting the necessary approximation parameters.

The Identification and options panel has several control elements. First of all, a

fidata structure needs to be selected from the list. The list is populated by base

workspace objects of this type.

75

The Identified model panel contains textboxes with the fractional zero and pole poly-

nomials in symbolic form. It also has checkboxes that allow to fix either polynomial

during identification.

The Generate initial guess model panel allows to create an initial model. To do this,

polynomials can be generated independently by specifying a commensurate-order q

such that 0.01 ≤ q < 2, the order of the polynomial and hitting the Generate button.

Finally, the options panel provides means to limit the search range for coefficients and

exponents. The identification type provides three options:

• free identification, i.e. all model parameters are optimized,

• fix exponents, good for obtaining fractional-order models by specifying a single

commensurate order,

• fix coefficients, so only exponents are optimized.

Pressing the Identify button will invoke the fid() function and identification in-

formation will be shown in the MATLAB console. After the identification process

completes, a plot with fitting results will be displayed. If the results are satisfactory,

the system can be exported to workspace via the Export to workspace button.

Selecting q = 1 and fixing the exponents results in a classical, integer-

order model identification problem. In such a case it is important to

select either “Oustaloup filter” or “Refined Oustaloup filter” for simula-

tion. Since fractional orders are not present in this case, approximation

parameters are not important.

It is also possible to import an initial guess model via menu by selecting Import→Initial

guess model... and typing the workspace name of the system.

6.2.3.2 Function fotfrid()

SYNTAX

fotfrid

76

DESCRIPTION

This is the graphical user interface called FOTF Frequency-domain Identification

Tool . It serves as the front-end for the ffid() and ffid_bf() functions. The GUI

is shown in Figure 6.9.

Figure 6.9: FOTF Frequency-domain Identification Tool user interface

The Identification and options panel contains the ffidata object selector and two

sub-panels. The Identification model and options panel allows to choose the iden-

tified model parameters (commensurate-order 0.01 ≤ q < 2 and polynomial orders)

and identification type has three choices:

• Hartley method,

• Levy method,

• Vinagre method.

An image is also displayed, showing the identified model structure for reference. The

Identified model panel contains the recently identified model.

Pressing the Identify button will start the identification process. When it is finished, a

plot will be drawn with identification results. The obtained model can then be saved to

workspace clicking the Export identified system button.

77

Levy and Vinagre identification methods allow using best fit optimization that can be

accessed from the menu by selecting Tools→Best fit . A dialog will pop up requesting

additional information. It is required to set maximum polynomial orders and maximum

number of iterations (0 for unlimited) in this dialog. The optimization procedure will

then search for optimal model parameters (commensurate-order and fractional polyno-

mial orders) and the best fit model.

6.2.4 Identification Examples

The following examples illustrate the proposed fractional-order model identification

process. For the most part, known plants are used to generate identification data to

verify the effectiveness of the identification algorithms. The graphical user interfaces

are used for identification in all cases.

Example 6.2.1 Consider a fractional-order system given by

G2(s) =
1

0.8s2.2 + 0.5s0.9 + 1
.

Let us generate an identification dataset based on the step response. A MATLAB

function prbs() can be used for experimental input signal generation:

G2=newfotf(’1’,’0.8s^2.2+0.5s^0.9+1’);

t=(0:0.01:20)’; u=prbs(5,100,[0 1]);

u=u(450:length(t));

t=t(1:length(t)-449); y=lsim(G2,u,t)’;

id1=fidata(y,u,t);

This creates an object id1 of type fidata with 1552 points. Next, the graphical user

interface is launched by typing

fotfid

Suppose that nothing is known about the initial system. Then, one can obtain results

only by selecting various initial guess model commensurate orders and polynomial

orders and by setting other options. For this example, one could fix the zero polynomial

at “1” by ticking the checkbox next to it, select q = 1.2 and generate a fractional pole

polynomial of order 2. Thus, the initial model is

78

Ginit(s) =
1

s2.4 + s1.2 + 1
.

The other options are set as shown in Figure 6.10. Also, because of the relatively

low number of identification points, the Grünwald-Letnikov simulation method can be

used for this case.

Figure 6.10: Identification options for id1

To begin the identification process one needs to press the Identify button. The result

of the identification is illustrated in Figure 6.11. The obtained model has a fractional-

order transfer function

Ĝ(s) =
1

0.8s2.2 + 0.5s0.90002 + 1s2.9548e−006
.

It can be seen, that the last term has an order 2.9548 ·10−6 → 0. Thus the initial model

was successfully recovered from the generated data. However, the initial guess was

close to the final result. In a real situation, choosing the suitable initial model without

any prior knowledge may take a lot of effort.

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1

1.5

2

Time [sec]

A
m

pl
itu

de

Source data
Identified model
Error

Figure 6.11: System G2 identification result

Example 6.2.2 In the following example we will identify a real thermal system. It is

given by a simple object consisting of a heating component and a cooling fan.

79

Figure 6.12: Thermal object used in experiment

The schematic diagram for this experiment is depicted in Figure 6.13. The voltage

from the voltage source is directly applied to the heater. An approximate equation to

determine the resulting temperature is given by

T = c · U2 + T0 [◦C] ,

where c is a constant coefficient, U is the applied voltage in volts and T0 is the initial

temperature. The temperature is measured using a type K thermocouple with a DC

output of 0...10 mV, amplified with a gain of 30 and fed into a Velleman PCS100

oscilloscope, which is used to register both the temperature obtained from the amplified

thermocouple signal and the voltage source signal.

Figure 6.13: Experiment schematic diagram

Data was collected from three consecutive experiments. Different voltage set values

were used. Due to some limitations of used software and hardware, a total of 1700

80

points were recorded with a sampling interval of Ts = 2 seconds. The obtained system

output vector was then filtered ensuring zero phase distortion using a low-pass filter

by means of MATLAB’s filtfilt() function, and a transformation was applied so

that the output signal vector would contain real temperature values in ◦C. To account

for zero initial conditions requirement the temperature output signal was also shifted

such that t = 0 → y(t) = 0. The system input vector was reconstructed by using

registered input signal transition times and also a transformation was applied such that

û(t) = 0.01 · u2(t) — the obtained input signal is thus a rough approximation of the

final temperature value. A plot of the identification dataset can be seen in Figure 6.14.

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

300

350

400

Time [s]

A
m

pl
itu

de

Output signal y(t)
Input signal u(t)

Figure 6.14: Plot of the identification dataset for the thermal object

The system can now be identified using the fotfid tool. From previous knowledge,

we know that in case of an integer-order model, this system can be approximated by

a second order model. Thus, one could get the initial guess model by generating a

fractional pole polynomial with q = 1, n = 2 and fixing the zero polynomial at “1” so

that a classical, integer order model is initially obtained in the form

Ginit(s) =
1

s2 + s+ 1
.

The system is then identified using the Free identification method within coefficient

limits clim = [0; 3000] and exponent limits elim = [10−9; 3]. Identification yields the

following model:

Ĝ(s) =
1

2012.409s1.8063 + 107.2882s0.93529 + 1.0305
.

81

Validation is carried out with the same dataset as for identification. The corresponding

plot is given in Figure 6.15.

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400
A

m
pl

itu
de

Initial data
Identified model

0 500 1000 1500 2000 2500 3000 3500
−10

−5

0

5

10

Time [s]

E
rr

or

Figure 6.15: Thermal system fractional model validation

Two integer-order models were obtained from the same experimental dataset by using

the MATLAB Identification toolbox for comparison. Results are provided in Table 6.6.

Table 6.6: Process model identification comparison

IDENTIFIED MODEL SQUARE ERROR NORM

Ĝfrac(s) = 1
2012.409s1.8063+107.2882s0.93529+1.0305

71.7702

Ĝio1(s) = 0.96039
2655.4725s2+151.626s+1

e−1.1844s 72.3396

Ĝio2(s) = 0.96035
2835.2438s2+152.593s+1

81.8971

Taking the square error norm as a measure of model precision, one could say that the

fractional-order model Ĝfrac is more accurate than the integer-order models Ĝio1 and

Ĝio2. This is to be expected due to the properties of fractional operators and the extra

degrees of modeling freedom. However, in order to claim this explicitly one would

need to use hardware and software methods with a more strict precision requirement.

A comparison of frequency responses of systems Ĝfrac and Ĝio2 is given in Figure

6.16. The system Ĝio1 has a delay term which introduces rapid phase accumulation

and is therefore not shown. Suffice it to say that its magnitude frequency behavior is

82

similar to that of system Ĝio1.

−250

−200

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fractional−order model

Integer−order model

Figure 6.16: Frequency responses of identified fractional-order and integer-order systems

Example 6.2.3 In this example we will illustrate the use of the frequency-domain

identification tool. Consider a plant given by

G(s) =
s0.32 + 5

100s1.92 + 20s0.96 − 5s0.64 + 1
.

For this example we will generate an identification dataset fid1 with 50 logarithmi-

cally spaced frequency sample points in the range ω = [10−4; 104]. This can be done

by writing the following into the MATLAB command line:

G = newfotf(’s^0.32+5’, ...

’100s^1.92+20s^0.96-5s^0.64+1’);

w = logspace(-4, 4, 50);

fid1 = ffidata(freqresp(G, w), w);

Now, it is time to launch the frequency domain identification tool by typing

fotfrid

Next, one should select the newly generated dataset, choose the identification param-

eters and algorithm. In order to save time, the Best fit tool can be used with Levy

and Vinagre algorithms. If nothing about the model is known and it is impossible to

predict the model orders, then the commensurate order and polynomial orders are to

be chosen by trial and error.

83

For this example, if one selects q = 0.2 and uses the best fit optimization tool with a

maximum order ofN = 6 and unlimited number of iterations with the Vinagre method,

then the following model is obtained:

2.6322 · 10−15s1.92 − 1.4416 · 10−13s1.6 + 3.2699 · 10−12s1.28

Gid(s) =
−3.7288 · 10−11s0.96 + 2.1969 · 10−10s0.64 + s0.32 + 5

100s1.92 + 1.6987 · 10−8s1.6 − 1.0219 · 10−8s1.28

+20s0.96 − 5s0.64 − 1.5758 · 10−10s0.32 + 1

Identification result is presented in Figure 6.17. Notice the residual terms. By truncat-

ing this system using

Gid = trunc(Gid, 1e-5, 1e-5)

the initial model is successfully recovered.

10
−4

10
−2

10
0

10
2

10
4

−200

−150

−100

−50

0

50

M
ag

ni
tu

de
 [d

B
]

Initial data
Identified model

10
−4

10
−2

10
0

10
2

10
4

−200

−150

−100

−50

0

50

Frequency [rad/s]

P
ha

se
 [d

eg
]

Initial data
Identified model

Figure 6.17: Frequency-domain identification example

Obviously, the system used in this example was relatively easy to identify. In practical

cases, one should carefully consider the choice of the commensurate order. The iden-

tified system polynomials may be of a very high order, in which case the Best fit tool

will be less useful due to large computational efforts involved.

For a practical example of frequency-domain identification see the fractional lead-lag

compensator realization example in Subsection 6.3.5.

84

6.3 System Control Module

The functions in this module provide means to design fractional-order controllers. Tun-

ing methods for the PIλDµ controller are also provided.

6.3.1 Fractional-Order Controller Design

6.3.1.1 Function fracpid()

SYNTAX

[Gc, cttype] = fracpid(Kp, Ki, lambda, Kd, mu)

INPUT ARGUMENTS

• Kp — proportional gain,

• Ki — integrator gain,

• lambda — integrator order (positive),

• Kd — differentiator gain,

• mu — differentiator order.

OUTPUT ARGUMENTS

• Gc — resulting controller given as fotf object,

• cttype — string containing controller type (“P”, “PI”, “PD” or “PID”).

DESCRIPTION

This function returns a fractional-order transfer function that corresponds to a fractional-

order PID controller given by

Gc = Kp +
Ki

sλ
+Kds

µ.

85

6.3.1.2 Function tid()

SYNTAX

Gc = tid(Kt, n, Ki, Kd)

INPUT ARGUMENTS

• Kt — tilt gain,

• n — tilt integrator order denominator in 1
n

,

• Ki — integrator gain,

• Kd — differentiator gain.

OUTPUT ARGUMENTS

• Gc — resulting controller fotf object.

DESCRIPTION

This function returns a fotf object corresponding to a TID controller in form

Gc =
Kt

s1/n
+
Ki

s
+Kds.

6.3.1.3 Function frlc()

SYNTAX

[r, mag, ph] = frlc(K, x, lambda, alpha, w)

INPUT ARGUMENTS

• K — fractional-order lead-lag compensator parameter k′,

• x — fractional-order lead-lag compensator parameter x,

• lambda — fractional-order lead-lag compensator parameter λ,

• alpha — fractional-order lead-lag compensator order α,

86

• ω — vector with frequency at which to calculate the compensator frequency

response in rad/s.

OUTPUT ARGUMENTS

• r — complex frequency response vector,

• mag — frequency response magnitude vector,

• ph — frequency response phase angle vector in degrees.

DESCRIPTION

This function calculates the frequency response of a fractional-order lead-lag compen-

sator given by

Gc(jω) = k′
(
λjω + 1

xλjω + 1

)α
at frequencies given in ω. Since there is currently no direct way of realizing an implicit

fractional-order system directly, this information can be used to identify a fractional or

integer order model to implement the controller.

Magnitude and phase are only calculated when requested, i.e. if there is more than one

output argument specified.

6.3.2 Integer-Order Controller Tuning By Process Model Approx-

imation

6.3.2.1 Function fotf2io()

SYNTAX

[K, L, T] = fotf2io(sim, model, init, op)

INPUT ARGUMENTS

• sim — a fsparam data structure,

87

• model — a string containing a process model identifier, can be ′fopdt′, ′ipdt′ or
′foipdt′,

• init (optional) — initial parameters in form [K L T], defaults to [50 50 50],

• op (optional) — MATLAB optimset object with additional optimization pa-

rameters.

OUTPUT ARGUMENTS

• K, L, T — process model parameters (see description).

DESCRIPTION

This function is used to obtain an process model approximation of a fractional-order

system by optimizing a set of parameters by means of Optimization toolbox function

lsqnonlin(). The error in step response is minimized.

There are three process model types:

• First-order plus dead time (FOPDT) given by G(s) =
K

1 + Ts
e−Ls,

• Integrator plus dead time (IPDT) given by G(s) =
K

s
e−Ls,

• First-order integrator plus dead time (FOIPDT) given byG(s) =
K

s(1 + Ts)
e−Ls.

These models are applicable only if the fractional-order step response is aperiodic.

They can be used as means of integer-order controller tuning.

REMARKS

This function requires the MATLAB Optimization toolbox.

6.3.3 PIλDµ Controller Optimization

6.3.3.1 Object fpopt()

SYNTAX

88

opt = fpopt(type,p_0,pmax,pmin,metric,gm,pm,strict,op)

INPUT ARGUMENTS

• type — optimization type, can be set to fix ′n′ (none; default), ′e′ — exponents

or ′c′ — coefficients,

• p0 — initial PID parameters in form [Kp Ki Kd λ µ],

• pmax — maximum values of parameters in p,

• pmin — minimum values of parameters in p,

• metric— a string with fractional PID performance metric, can be ′ise′ (default),
′iae′, ′itse′ or ′itae′,

• gm — gain margin specification (in dB), defaults to 10,

• pm — phase margin specification (in degrees), defaults to 60,

• strict — strictness option (boolean value; default is false),

• op — additional optimization options optimset object (default setting limits

the number of allowed optimization iterations to 50).

OUTPUT ARGUMENTS

• opt — data structure that contains fractional PID tuning options.

DESCRIPTION

This object is designed for convenient specification of fractional PID optimization op-

tions. The performance metric option refers to the following error indices:

• Integral square error ISE =
∫ t
0
e2(t) dt,

• Integral absolute error IAE =
∫ t
0

∣∣e(t)∣∣ dt,

• Integral time-square error ITSE =
∫ t
0
te(t)2 dt,

• Integral time-absolute error ITAE =
∫ t
0
t
∣∣e(t)∣∣ dt,

89

where e is the error vector.

The strictness option, if set to true, requires that the initial values of the fractional PID

immediately satisfy the minimum design specifications given by gm (gain margin) and

pm (phase margin), i.e. the initial solution in p0 must be feasible. When set to false

will allow control system evaluation outside of these specifications.

All input arguments are optional.

6.3.3.2 Function fpid_optimize()

SYNTAX

[Kp,Ki,Kd,lam,mu] = fpid_optimize(fs, fopt, G)

INPUT ARGUMENTS

• fs — a fsparam simulation structure,

• fopt — a fpopt optimization options structure,

• G (optional) — any valid MATLAB LTI system (tf, zpk, ss).

OUTPUT ARGUMENTS

• Kp, Ki, Kd, lam, mu — obtained optimal fractional PID parameters.

DESCRIPTION

This function searches for optimal fractional PID parameters according to specifica-

tions in the fpopt object using principles found in Subsection 4.1.3 of Chapter 4. A

control system is built on every optimization iteration and its step response is evalu-

ated. The error vector is then obtained taking e(t) = 1−y(t), where y(t) is the control

system closed-loop step response. It is used to calculate the performance index, which

is minimized by means of the optimize() function [26].

To fulfill the design specifications the open-loop frequency response is also evaluated

at every iteration and gain and phase margins are obtained. These are compared to the

specified ones so that conditions Gmreal > Gmspec and Pmreal > Pmspec hold true.

90

With the strict option set to true, the initial PID parameters are required to immediately

fulfill the given design specifications.

optimize() uses a variant of the Nelder-Mead algorithm. In or-

der to introduce bound constraints it uses coordinate transformation,

while for other types of constraints (including non-linear constraints)

it utilizes penalty functions. This function is especially useful when

the objective function is either hard, or impossible to differentiate. It

is also self-contained meaning that MATLAB’s Optimization toolbox

does not need to be installed for it to work.

After the optimization is complete, the achieved gain and phase margins are displayed.

While there is currently no possibility to use the sensitivity functions as design speci-

fications, the frequencies corresponding to desired signal damping in dB can be found

by typing

[wt, ws] = csens(Gct, A, B, w);

where frequencies are such that ∀ω ≥ ωt [rad/sec] →
∣∣T (jωt)

∣∣ = A [dB] and ∀ω ≤

ωs [rad/sec] →
∣∣S(jωs)

∣∣ = B [dB]. These design specifications will be introduced in

the next version of the FOMCON toolbox.

REMARKS

The optimize() function is included with FOMCON toolbox.

6.3.4 Graphical User Interfaces

6.3.4.1 Function fpid()

SYNTAX

fpid

DESCRIPTION

This is the Fractional PID Design Tool graphical user interface (see Figure 6.18). The

interface contains an image of the unity feedback control system, which is used to

91

obtain the fractional control system. There are also two panels.

Figure 6.18: Fractional PID Design Tool graphical user interface

The Fractional PID parameters panel allows to enter the fractional PID parameters.

Pressing the Export PID controller to workspace button will trigger a pop up asking

for a workspace variable name to save the fractional controller.

The Fractional control system panel allows to view the controller, plant and full

control system in the console, simulate the designed control system and export it to

MATLAB workspace. Set the workspace variable name of the desired system in the

System textbox.

The system set in the System textbox may be any valid LTI object

(tf, zpk, ss). In such a case when simulating and exporting a control

system an additional dialog is shown which asks for Oustaloup filter

parameters to be used for the approximation of the control system.

The Tuning menu allows to access tuning tools:

• Integer-order PID tuning tool by process model approximation,

• Fractional PID optimization tool.

92

The initial values for fractional PID optimization will be current values, taken from the

left panel.

6.3.4.2 Function fpid_optim()

SYNTAX

fpid_optim

DESCRIPTION

The graphical user interface of the FPID Optimization Tool is shown in Figure 6.19.

This is the front-end for the fpid_optimize() function.

Figure 6.19: FPID Optimization Tool graphical user interface

The Plant model panel contains user controls to select the plant for which to obtain

the fractional PID and simulation options to use for control system approximation.

Please note, that even if the plant is not given by a fotf object, simulation parameters

still need to be supplied for the controller approximation. Also note, that Grünwald-

Letnikov simulation option is not provided. This is mainly due to simulation speed and

93

also because a sophisticated auto-ranging algorithm is used, courtesy of the Control

System toolbox.

The Fractional PID controller parameters panel is used for entering all controller

parameters, their minimum and maximum allowed values. Tuning method is also se-

lected here, available options are:

• tune all parameters,

• fix exponents,

• fix gains.

When exponents are fixed at λ = µ = 1, the tuning problem becomes that for the

integer-order PID controller.

It is also possible to tune PIλ and PDµ controllers with this tool. In

order to do this, the minimum and maximum values, as well as values

themselves of either Kd/µ or Ki/λ need to be set to zero. The cor-

responding parameters are then excluded from the optimization proce-

dure.

Finally, the Optimization and performance settings panel is used to set the desired

performance specifications, choose the performance metric (ISE, IAE, ITSE or ITAE),

select the design specification strictness, simulate optimization results on completion

and limit the number of optimization iterations. Pressing the Optimize button will

commence the optimization process. After the optimal fractional PID settings are ob-

tained, it is possible to launch the PID design tool (passing the values to it) by pressing

the Take values button.

6.3.4.3 Function iopid_tune()

SYNTAX

iopid_tune

94

DESCRIPTION

The Integer-order PID Tuning Tool graphical user interface is shown in Figure 6.20.

This tool is used to identify a fractional-order system by a process model and to tune

an integer-order PID based on the obtained model.

Figure 6.20: Integer-order PID Tuning Tool graphical user interface

The GUI is organized as follows. The Fractional plant model panel contains controls

to choose the desired fractional-order model and approximation parameters for simula-

tion, which is conducted during the identification process. The user can select between

two types of approximation (either of the Oustaloup filter types).

The Identification by integer order model , i.e. process model panel is used to obtain

the process model parameters by using the fotf2io() function. See its description

for details. It is also possible to plot the identification results to assess obtained model

validity.

Finally, the Integer-order PID tuning panel allows to find classical PID parameters by

using some widely known methods summarized in [5], among which are the following:

• Ziegler-Nichols PID tuning formula,

• Åström-Hägglund (AMIGO) PID tuning formula,

• Chien-Hrones-Reswick (set point regulation with 20% overshoot) tuning for-

mula,

95

• Chien-Hrones-Reswick (disturbance rejection with 20% overshoot) tuning for-

mula,

• Cohen-Coon tuning formula.

Pressing the Compute button recalculates the PID gains with regard to process model

parameters K, L, T , while pressing Take values brings up the Fractional PID De-

sign Tool .

6.3.5 Controller Design and Optimization Examples

Example 6.3.1 Consider a system discussed previously, which is a model of a heating

furnace:

G(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
.

In this example, we shall design a fractional PID controller for the given plant.

First of all, it can be seen from previous analysis (conducted in Subsection 6.1.8) that

the step response of this fractional-order system is aperiodic. Therefore, one could try

the FOMCON integer-order PID design tool first. To launch it, the following needs to

be typed in MATLAB command window:

iopid_tune

and the user interface will be shown. One would then type the name of the MATLAB

workspace variable into the Fractional PID model textbox. Considering that this plant

is better approximated with the refined Oustaloup filter, this filter should be chosen in

the simulation options. Next, one can select the model type “FOPDT” and set the

initial guess parameters such that K = L = T = 100. With these parameters, the

system is identified from the step response as the following FOPDT model (see Figure

6.21 for an illustration of the identification results):

GFOPDT (s) =
0.588586

1 + 4801.86s
e−11.2571.

Next, the Ziegler-Nichols tuning formula is used to obtain integer-order PID parame-

ters. These are calculated as Kp = 802.915, Ki = 24.3806, Kd = 6.09515.

96

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Original model
Identified FOPDT model

Figure 6.21: Fractional system identification by first-order plus dead time process model

We shall now research the potential improvement of these conventional PID settings by

introducing the fractional orders to the integrator and differentiator. For this purpose

we shall launch the fractional PID optimizing tool by typing

fpid_optim

and entering the gains obtained earlier. It is also possible to access this tool (copying

the gain and exponent values automatically) by clicking Take values in the integer-

order PID tuning tool and then choosing Tuning→Optimize from the menu of the

fractional PID design tool.

In the optimization tool, the simulation method should be changed to “Refined Oustaloup

filter”, optimization method should be “Fix gains”. Other options that are used in this

case are shown in Figure 6.22.

Figure 6.22: Optimization settings

Optimizing with initial orders set to λ = µ = 1 does not bring a significant im-

provement possibly due to a local solution. However, changing λ = 0.6, µ = 0.5

and limiting the search range (minimum and maximum values) to λ, µ = [0.1; 2] and

running optimization again yields the following controller:

Gc(s) = 802.915 +
24.3806

s0.3207
+ 6.0952s0.1.

97

The comparison of the step response of the control systems with different controllers

is given in Figure 6.23a, while the comparison of the open-loop frequency response

is shown in Figure 6.23b. It can be clearly seen, that by tuning only the orders of

the fractional controller a significant improvement is achieved in both the transient

response and frequency-domain characteristics.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

A
m

pl
itu

de

Fractional system with integer−order PID
Fractional system with fractional−order PID

(a) Closed-loop simulation

−200

−100

0

100

200

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/sec)
10

−5
10

0
10

5
−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Fractional system with integer−order PID

Fractional system with fractional−order PID

(b) Open-loop frequency response

Figure 6.23: System response comparison with integer-order and fractional-order PID controllers

Example 6.3.2 Consider again the plant given in the previous example, i.e.

G(s) =
1

14994s1.31 + 6009.5s0.97 + 1.69
.

We will now illustrate the design of a TID controller using a method proposed in [21].

First, assume the gain crossover frequency is ωcg = 0.05 rad/sec and the desired phase

stability margin ϕm = 45◦. According to the proposed tuning method (choosing the

Tilt component parameter n = 3), the following steps are carried out:

1. Setting the gains Ki = Kd = 0, the parameter Kt is sought, at which the loop

gain at frequency ωcg is 0 dB,

2. The gain Kd is sought such that the phase stability margin at ωcg is about 5◦

larger than desired,

3. The gain Ki is calculated from Ki = 0.25Ktω
(1−1/n)
cg .

Following this tuning procedure by analysing the open-loop frequency behavior the

controller parameters are obtained as Kt = 444, Ki = 15.065, Kd = 748. The

98

controller and the full control system are then designed by typing the following in

MATLAB:

G1 = newfotf(’1’,’14994s^1.31+6009.5s^0.97+1.69’);

Gc = tid(444,3,15.065,748);

Gct = feedback(G1*Gc, 1);

The step response of the closed-loop control system is given in Figure 6.24a. Also

consider the open-loop frequency response in Figure 6.24b. By introducing the Ki

gain the phase stability margin was reduced, thus the need for a larger stability margin

in tuning step 2 is made clear.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

A
m

pl
itu

de

(a) Closed-loop simulation

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency (rad/sec)
10

−5
10

0
10

5
−180

−135

−90

−45

0

P
ha

se
 (

de
g)

(b) Open-loop frequency response

Figure 6.24: Control loop with the TID controller analysis

Example 6.3.3 Consider a model of a thermal object we obtained in Subsection 6.2.4:

G =
1

2012.4087s1.8063 + 107.2882s0.93529 + 1.0305
.

We will now design a PIλDµ controller for this plant using the FPID Optimization

Tool .

Initially the PID parameters are set to Kp = Ki = Kd = 100, λ = µ = 1. The expo-

nents are fixed so that an integer-order PID could be designed. Search limits are set to

K = [−500; 500] for gains and γ = [0.01; 2]. For simulation, the refined Oustaloup

filter approximation is used with default parameters (ω = [0.0001; 10000], N = 10).

Specifications are as follows. Gain margin is set to 10 dB, while phase margin to 60

degrees (non-strict). Performance metric is ITAE.

99

Optimization with these settings leads to the following integer-order PID controller

parameter set: Kp = 49.7747, Ki = 0.45718, Kd = 204.8202. Obtained open-loop

phase margin is ϕm = 59.0896◦. Next the gains are fixed and integrator and differentia-

tor orders are set to λ = 0.9 and µ = 0.8 respectively. The strict option is enabled and

phase margin specification is changed to 59◦ to make sure this minimum is maintained

throughout the following optimization process. The optimization is then continued. As

a result, the orders are found such that λ = 1.0234 and µ = 0.53387.

A comparison of simulation of the designed control systems with a set value SV = 150

is shown in Figure 6.25. Again, by tuning only the orders of the controller a better

result is achieved.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Time [sec]

A
m

pl
itu

de

Thermal system with integer−order PID
Thermal system with fractional−order PID

Figure 6.25: Control system for thermal object comparison

Example 6.3.4 Consider an integer-order plant given by a model

G(s) =
2

s(0.5s+ 1)
.

In this example, we will realize a fractional lead-lag compensator for this plant dis-

cussed in [2]. The gain crossover frequency is chosen such that ωcg = 10 rad/sec. At

this frequency the plant has a magnitude of −28.1291 dB and a phase of −168.69◦.

To achieve a magnitude of 0 dB at the gain crossover frequency and a phase margin

ϕm = 50◦ the fractional lead compensator is designed with parameters k′ = 10, x =

0.005, λ = 0.6404, α = 0.5 and thus has the following implicit fractional-order trans-

fer function

100

Gc(s) = 10

(
0.6404s+ 1

0.0032s+ 1

)0.5

.

In order to implement this controller, consider the method described in Section 4.2.

First, the frequency response data for this controller is obtained using the frlc()

function in the range ω = [10−5; 105] and a frequency-domain identification dataset is

created by typing the following in MATLAB:

w = logspace(-5,5,1000);

r = frlc(10,0.005,0.6404,0.5,w);

flc = ffidata(r,w);

Next, the fotfrid tool is used to obtain a fractional-order approximation of the

compensator. With q = 0.492, setting both polynomial orders to 4 and using the

Vinagre method, the following fractional-order transfer function is obtained with an

error J = 0.014867:

Ĝc(s) =
0.031325s1.968 + 0.30643s1.476 + 4.6284s0.984 + 4.0234s0.492 + 10.0005

0.0002215s1.968 + 0.0021625s1.476 + 0.061928s0.984 + 0.41302s0.492 + 1
.

The frequency fitting result is also shown in Figure 6.26a. The open-loop control

system frequency response is given in Figure 6.26b. It can be seen, that the desired

crossover frequency ωcg = 9.94 and phase margin ϕm = 51.6◦ are very close to

specification.

10
−5

10
0

10
5

10

20

30

40

50

M
ag

ni
tu

de
 [d

B
]

Initial data
Identified model

10
−5

10
0

10
5

−20

0

20

40

60

Frequency [rad/s]

P
ha

se
 [d

eg
]

Initial data
Identified model

(a) Controller identification result

Bode Diagram

Frequency (rad/sec)

−150

−100

−50

0

50

100

150

M
ag

ni
tu

de
 (

dB
)

10
−5

10
0

10
5

−180

−135

−90

P
ha

se
 (

de
g)

(b) Control system open-loop frequency response

Figure 6.26: Fractional lead compensator realization

101

Finally, the step response of the designed control system is given in Figure 6.27.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [sec]

A
m

pl
itu

de

Figure 6.27: Control system with fractional lead compensator step response

6.4 Simulink Blockset

6.4.1 Library Overview

The FOMCON Simulink block library currently consists of 8 blocks and is shown in

Figure 6.28.

The library is based on Oustaloup filter approximation as per the oustapp() func-

tion. The discrete blocks use the Control System toolbox function c2d() to obtain the

discrete model from the Oustaloup filter LTI system. General block structure is used

where applicable.

The blocks are built using Simulink’s masking function, making it pos-

sible to define an arbitrary set of parameters and assign these to the

subsystem blocks. Since custom block face drawing is also supported,

it can be used to print useful information on the block, such as the in-

tegration/differentiation orders and fractional PID controller type.

102

Figure 6.28: FOMCON Simulink library

In order to ensure efficient and accurate simulation, the model build

with these blocks may be made up of stiff systems and an appropri-

ate solver should be used in Simulink in such a case (ode15s or

ode23tb).

Further, description for every block is provided.

6.4.2 Block Description

6.4.2.1 Fractional operator

BLOCK PARAMETERS

• Gain — block gain,

• Order — fractional operator order in range (−1; 1),

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

103

• Approximation order — filter approximation order.

DESCRIPTION

This block represents a general fractional operator sγ with −1 < γ < 1. Oustaloup

refined filter is used to obtain the integer-order LTI system approximation which will be

used for simulation. Additionally, a low-pass filter is applied internally with crossover

frequency of 1
ωh

. This is used to prevent algebraic loops in Simulink.

6.4.2.2 Fractional derivative

BLOCK PARAMETERS

• Derivative order — fractional derivative order,

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad.sec,

• Approximation order — filter approximation order,

• Use Oustaloup refined filter (checkbox) — option to use either the original

Oustaloup filter, or the refined one.

DESCRIPTION

This block realizes a fractional derivative sγ of order γ > 0, valid in the specified

frequency range [ωb, ωh]. This means that for higher orders (such that γ > 1) an

additional zero will be added to the LTI system for every integer order and it will

inevitably lead to an improper system (in which there are more zeros than poles). To

prevent this, for each added zero, a pole will also be added. This will potentially reduce

simulation accuracy near frequency ωh.

6.4.2.3 Fractional integrator

BLOCK PARAMETERS

• Integration order — fractional integrator order,

104

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

• Approximation order — filter approximation order,

• Use refined Oustaloup filter (checkbox) — option to use either the original

Oustaloup filter, or the refined one.

DESCRIPTION

This block realizes a fractional integrator s−γ with fractional order γ > 0, valid in the

specified frequency range [ωb, ωh]. A low-pass filter is used internally with crossover

frequency of 1
ωh

to prevent algebraic loops in Simulink.

6.4.2.4 Fractional Transfer Fcn

BLOCK PARAMETERS

• Zero polynomial b(s) — fractional zero polynomial string,

• Pole polynomial a(s) — fractional pole polynomial string,

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

• Approximation order — filter approximation order,

• Use refined Oustaloup filter (checkbox) — option to use either the original

Oustaloup filter, or the refined one.

DESCRIPTION

This block realizes a fractional transfer function in form G(s) = b(s)
a(s)

in the frequency

range [ωb, ωh]. A low-pass filter is also used in series with the LTI block with crossover

frequency of 1
ωh

to prevent algebraic loops in Simulink.

105

6.4.2.5 Fractional PID controller

BLOCK PARAMETERS

• Kp, Ki , lambda, Kd , mu — fractional PID parameters,

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

• Approximation order — filter approximation order.

DESCRIPTION

This block realizes the PIλDµ controller in the frequency range [ωb, ωh]. Its structure

is given in Figure 6.29. The refined Oustaloup filter is used for fractional operator

approximation.

Figure 6.29: Fractional PID controller block structure

6.4.2.6 TID controller

BLOCK PARAMETERS

• K t, n, K i, Kd — Tilt-Integral-Derivative controller parameters,

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

• Approximation order — filter approximation order.

106

DESCRIPTION

This block realizes the TID (Tilt-Integral-Derivative) fractional controller in the fre-

quency range [ωb, ωh]. Its structure is presented in Figure 6.30. The Tilt component

is such that Kt · s−1/n, where Kt is the tilt gain and n is the fractional parameter. The

refined Oustaloup filter is used for fractional operator approximation.

Figure 6.30: TID controller block structure

6.4.2.7 Discrete fractional Transfer Fcn

BLOCK PARAMETERS

• Zero polynomial b(s) — fractional zero polynomial string,

• Pole polynomial a(s) — fractional pole polynomial string,

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

• Approximation order — filter approximation order,

• Use refined Oustaloup filter (checkbox) — option to use either the original

Oustaloup filter, or the refined one.

• Discretization method — function c2d() discretization method parameter,

• Critical frequency — used only with the Prewarp method, in rad/sec,

• Sample time — discrete sample time in seconds.

107

DESCRIPTION

This block realizes a discrete approximation of a continuous fractional transfer func-

tion given by G(s) = b(s)
a(s)

in the frequency range [ωb, ωh]. Discretization may be done

by applying the method discussed in Section 2.6 of Chapter 2. This specific method

requires to choose the Prewarp discretization method and set the Critical frequency

(plant crossover frequency). Other methods are also applicable.

6.4.2.8 Discrete fractional PID controller

BLOCK PARAMETERS

• Kp, Ki , lambda, Kd , mu — fractional PID parameters,

• Frequency range — filter approximation frequency range in form [ωb, ωh] in

rad/sec,

• Approximation order — filter approximation order,

• Use refined Oustaloup filter (checkbox) — option to use either the original

Oustaloup filter, or the refined one.

• Discretization method — function c2d() discretization method parameter,

• Critical frequency — used only with the Prewarp method, in rad/sec,

• Sample time — discrete sample time in seconds.

DESCRIPTION

This block realizes a discrete fractional PID controller in the frequency range [ωb, ωh]

using c2d(). The method described in Section 2.6 of Chapter 2 can be applied similarly

to the discrete fractional-order transfer function block.

6.4.3 Examples

Example 6.4.1 Consider a non-linear fractional-order differential equation given in

[2, 5]:

108

3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
+
∣∣2D0.7y(t)

∣∣1.5 +
4

3
y(t) = 5 sin(10t).

It is very hard to solve this equation analytically. To solve it numerically, a model can

be built in Simulink, using the generalized Fractional operator block. The equation

is first rewritten as

y(t) =
3

4

(
5 sin(10t)− 3D0.9y(t)

3 + 0.2D0.8y(t) + 0.9D0.2y(t)
−
∣∣2D0.7y(t)

∣∣1.5)

and the corresponding model is constructed in Simulink (Figure 6.31a). For every

fractional block Oustaloup filter parameters are set such that ω = [10−4; 104], N = 5.

The obtained simulation result, i.e. the differential equation solution is given in Figure

6.31b.

Example 6.4.2 Consider the thermal system, identified previously, and the corre-

sponding fractional-order PID:

G(s) =
1

2012.409s1.8063 + 107.2882s0.93529 + 1.0305
,

Gc(s) = 49.7747 +
0.45718

s1.0234
+ 204.8202s0.53387.

In this example we will build the continuous-time model of this control system and

also observe the behavior of the equivalent discrete-time model.

The obtained model is shown in Figure 6.32a. The set value was set to SV = 150. The

fractional-order transfer function and the PID controller were realized via correspond-

ing blocks with approximation parameters ω = [10−5; 105], N = 10, Oustaloup’s

refined filter was used in all cases. The Linear interpolation method was used for

discretization with sample time Ts = 1 sec. The results of the simulation are shown in

Figure 6.32b.

109

(a) Simulink model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

Time [sec]

A
m

pl
itu

de

(b) Simulation result

Figure 6.31: Fractional-order differential equation numerical solution

110

(a) Simulink model

0 5 10 15 20 25 30 35 40 45 50
−20

0

20

40

60

80

100

120

140

160

180

Time [sec]

A
m

pl
itu

de

Continuous time
Discrete time

(b) Simulation result

Figure 6.32: Simulation of the thermal control system in continuous and discrete time

111

Discussion

In this chapter the author presents a brief analysis of the application of fractional cal-

culus in the field of modeling, identification and control. Some advantages and draw-

backs of the associated methods used in the FOMCON toolbox are also discussed.

The reason why fractional-order calculus is still absent in elementary mathematical

texts is not only due to the controversy in definitions, but also because there is currently

no clear interpretation of fractional integration and differentiation in neither geometric

nor physical sense. While significant attempts to obtain such interpretations were made

[27], they are still somewhat generic and certainly not very intuitive. However, the

author strongly believes that with continued research a very powerful computational

tool will be obtained. The explanation behind it may not necessarily be trivial.

One of the most apparent problems in fractional-order modeling is the problem of

fractional-order system initial conditions which stems from the fact, that the current

fractional derivative value depends on all of the past values. This problem cannot be

easily solved.

The infinite memory problem is also the cause of modeling issues, in the context of the

FOMCON toolbox this involves time-domain simulation of fractional-order systems

by using the Grünwald-Letnikov definition. The issue here is that simulation time

grows drastically with the number of simulation points. Thus, effective time-domain

analysis of fractional-order systems using this method is limited. This also directly

impacts system identification from time-domain data. A method should be sought to

overcome this problem. An effective finite-memory approach may be required.

On the other hand, it is possible to approximate a fractional-order system with an

integer-order one, using one of several available methods. In the context of this work,

an effective frequency-domain based solution, called the recursive Oustaloup filter, was

introduced. Since MATLAB has several differential equations solvers suitable for par-

112

ticular cases, the Oustaloup filter approximations can be used for time-domain simula-

tion of fractional-order systems in place of the Grünwald-Letnikov method. However,

the Oustaloup filter is frequency limited, which may lead to problems if the frequency

range is not carefully chosen, as it has been previously shown. Also, for very compli-

cated fractional-order systems the approximation may become inaccurate. Increasing

the filter order may help but it is also limited by the available computing resources.

Hence we face the infinite memory problem yet again. The same problem arises with

discretization of fractional-order systems.

Some limitations can be found in FOMCON system identification module:

• Due to the aforementioned simulation problem and to some extent to the chosen

strategy and identification means the identification process may be slow.

• Global optimal solution with the current best fit strategy may not be obtained

using the frequency-domain identification tool.

• There is little control over the accuracy of the optimized fractional operator or-

ders. Generally, identification results in non-commensurate systems. This holds

true for both the time-domain and frequency-domain identification methods.

The latter problem cannot be solved by simply trimming or rounding orders with given

precision. Model transformations are sometimes applicable, however a solid method

of post-identification model fitting is still to be developed. Other limitations will be

gradually eliminated.

In the FOMCON system control module there are several limitations:

• Limited design specifications in fractional-order PID tuning, limited control over

the exact specification fullfillment requirement.

• Global optimal solution may not be found using the fractional-order PID opti-

mization technique.

• No direct fractional lead-lag compensator design method.

• No automatic TID controller tuning/optimization method.

However, all these limitations are temporary and will be eventually overcome in the

upcoming versions of the toolbox.

113

As for the Simulink toolbox, although it allows for a more sophisticated modeling

approach, the block realization is currently limited to the frequency-bound Oustaloup

filter approximation. While it has been shown, that this method is highly effective

for modeling fractional-order systems, there are still issues, such as possible algebraic

loops in Simulink and the proper LTI model simulation requirement, which need to be

addressed. Also, more suitable discrete blocks need to be introduced.

Otherwise, it has been shown that fractional-order calculus offers several advantages

in system control. Moreover, the author believes that the introduction of fractional-

order calculus to automatic control systems in particular is a required step because it

is evident, and conveyed throughout this paper, that the generalization of the deriva-

tive order to the fractional case will lead to more accurate models, advanced system

identification techniques and development of efficient control strategies.

114

Conclusions

In this chapter the author presents an overview of the studied problems, achieved re-

sults and further topic development perspectives.

In this thesis the reader was introduced to methods of dynamic system modeling, iden-

tification and control in the context of fractional-order calculus. FOMCON, a new

MATLAB fractional toolbox, in which these methods have been implemented, was

presented and discussed. The examples considered in this thesis were limited to rela-

tively simple models. However, there is no reason to doubt that proposed methods will

be effective for much more complicated cases, albeit at an inevitable expense of pro-

cessing speed. Further a list of advantages and drawbacks for each module is provided.

System analysis module

• Advantages

◦ Fully-featured for fractional-order transfer function analysis.

◦ Provides convenience methods, e.g. the string parser, and a graphical user

interface for an effective workflow.

◦ Has means of system export to other toolbox formats, e.g. to transfer the

work to the CRONE toolbox.

◦ Tightly integrated with the System Control toolbox which means highly

effective algorithms are used for data processing.

• Drawbacks

◦ Limited to the single input-single output linear time-invariant dynamic sys-

tem case.

115

◦ Currently has no support for direct fractional-order state-space system anal-

ysis (although offers the ability to convert fractional-order transfer func-

tions to their state-space represantation).

◦ There is no support for fractional-order system initial conditions.

◦ Time-domain simulation may require a lot of computational resources.

◦ No proper discretization method is implemented.

◦ Stability analysis has a fixed precision to solve the associated computa-

tional effort problem.

Identification module

• Advantages

◦ Offers more accurate identification than the integer-order identification.

◦ Encompasses both time-domain and frequency-domain identification meth-

ods.

◦ Provides GUIs for all identification tools facilitating the initial guess model

design and identification process.

◦ Provides a vast array of options to achieve the best possible results with the

proposed methods.

• Drawbacks

◦ Time-domain identification may be slow and require a lot of computational

resources.

◦ No signal filtering feature is currently available, signal pre-filtering should

be done by the user.

◦ A globally optimal solution may not be found using the best fit tool of the

frequency-domain identification.

◦ Control over free identification in the time domain is limited.

Control module

• Advantages

116

◦ Offers methods for fracional-order PID controller design, tuning and opti-

mization according to given specifications and with a vast array of options.

◦ A GUI is available for each feature.

◦ Controller optimization can handle fractional-order and integer-order sys-

tems.

◦ Controller optimization does not require the Optimization toolbox.

◦ Has methods of implementing of the TID controller and fractional lead-lag

compensator.

• Drawbacks

◦ Controller optimization has limited support of performance specifications.

◦ No analytic tuning method for the fractional PID controller.

◦ Limited support for integer-order PID tuning methods.

◦ No TID compensator optimization.

◦ No direct method for realization of the fractional lead-lag compensator.

◦ No automatic tuning method for the fractional lead-lag compensator.

Simulink blockset

• Advantages

◦ Provides sophisticated methods for fractional-order system modeling.

◦ Offers a complete library featuring means of system analysis in discrete

time by continuous-time model conversion.

◦ General block structure is applied where possible.

• Drawbacks

◦ Use of Oustaloup approximation of fractional operators with higher orders

in transfer function and diffrentiator blocks may lead to improper systems,

and the applied workaround may reduce accuracy near the high frequency

bound.

117

◦ Simulation may be slow so that a stiff systems solver needs to be used at a

potential expense of accuracy.

◦ The transfer function blocks only allow setting the fractional-order polyno-

mials via text strings.

Research perspectives

With the above considerations, further research directions, involving the development

of the FOMCON toolbox, can be outlined:

• Examine the possibility for fractional-order MIMO system modeling.

• Implement a tool for working with fractional-order state-space models.

• Search for a way to effectively implement the initial conditions problem.

• Implement more time-domain analysis methods, especially considering the need

for an effective simulation method suitable for obtaining accurate responses on

a larger time interval.

• Improve stability analysis precision for systems with a very low commensurate-

order.

• Research methods for converting a high-order interger-order model to a frac-

tional one possibly using frequency fitting techniques, e.g. converting an Oustaloup

filter approximation back to the original model.

• Research and implement discrete fractional-order systems, expand the corre-

sponding Simulink feature set.

• Research more effective time-domain identification methods, implement suitable

signal filtering methods.

• Research the contribution of noise and disturbances to the identified model.

• Develop a method for obtaining a globally optimal solution to the frequency-

domain identification problem.

• Develop a more flexible frequency-domain identification method, involving fit-

ting arbitrary orders, i.e. not limited to a particular commensurate order of the

polynomials.

118

• Obtain a method for post-identification model fitting to decrease fractional op-

erator orders precision requirement maintaining the accuracy of the identified

system.

• Develop identification strategies per identified object class.

• Implement more performance specifications in fractional-order PID controller

optimization.

• Research methods for analytic fractional PID tuning.

• Implement Tilt-Integral-Derivative controller tuning and optimization based on

performance specifications.

• Implement fractional lead-lag compensator direct realization and tuning based

on performance specifications.

• For all controller types, research auto-tuning methods and strategies.

• Make more general blocks for the Simulink library, implement other types of

simulation, i.e. Grünwald-Letnikov; research possibilities for improving simu-

lation efficiency with non-stiff system solvers.

Porting the FOMCON toolbox to another computing platform should also be consid-

ered for the sake of exposure and to expand the range of potential users. One of the

obvious choices is Scilab, becuase it is open-source and also contains a Simulink-

like environment. A research has been previously conducted by the author addressing

possibilities for fractional-order modeling implementation in Scilab. The following

problems were discovered:

• Scilab ODE solvers are somewhat limited where simulation of high-order sys-

tems is concerned.

• There is currently no direct support for object-oriented programming.

• There are no sophisticated tools for building graphical user interfaces for Scilab

and general support for GUIs is limited.

119

The lack for support of object-oriented programming can be partially overcome by

using a Scilab-specific data structure which also allows for method overloading. How-

ever, the need for an effective FODE computation algorithm and a suitable GUI design

tool may lead to initiation of more Scilab related projects.

For now a small set of functions was realized for Scilab. Consider the comparison of

the step response of the thermal system G(s) = 1
2012.409s1.8063+107.2882s0.93529+1.0305

in

MATLAB and Scilab given in Figure 6.33. It can be seen, that the same exact result

was obtained. It should be noted, that the Oustaloup filter was used in both cases.

In Scilab, the only way to simulate the recursive filter was to obtain its state-space

representation. This issue should also be considered.

Step Response

Time (sec)

A
m

pl
itu

de

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Step response in MATLAB (b) Step response in Scilab

Figure 6.33: Thermal system simulation in MATLAB and Scilab

The following topics are also considered to be important research directions.

• Fractional-order non-linear systems analysis.

• Fractional-order PID controller, TID controller and lead-lag compensator hard-

ware implementation.

• Research of fractional-order calculus in artificial neural networks.

• Research of classical PID controller structures, i.e. the Smith Predictor, general-

ized to the fractional case.

120

Concluding comments

This thesis has illustrated the use of fractional-order calculus in dynamic system mod-

eling, identification and control. The benefits stemming from applying fractional-order

calculus to the problems of automatic control were made evident.

It can be concluded, that fractional-order calculus is a necessary generalization. Al-

though our current mathematical tools in this field are somewhat limited, and even

obtaining a numerical solution for the fractional-order derivatives may be tedious, it is

expected that this topic will gain more attention in the coming years, efficient compu-

tational and analytical methods will be developed and the use of non-integer calculus

will become standard practice.

121

Bibliography

[1] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and

Fractional Differential Equations, Wiley, New York, 1993.

[2] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-

order Systems and Controls Fundamentals and Applications, Springer-

Verlag, London, 2010.

[3] Y.Q. Chen, I. Petráš, D. Xue, Fractional Order Control - A Tutorial,

American Control Conference, pp. 1397-1411, 2009.

[4] I. Podlubny, Fractional Differential Equations, Academic Press, San

Diego, CA, 1999.

[5] D. Xue, Y.Q. Chen, D.P. Atherton, Linear Feedback Control Analysis

and Design with MATLAB, Advances in Design and Control, Siam,

2007.

[6] R. Hilfer, Applications of Fractional Calculus in Physics, World Sci-

entific, Singapore, 2000.

[7] A. Oustaloup, P. Melchior, P. Lanusse, O. Cois, F. Dancla, The CRONE

toolbox for Matlab, Computer-Aided Control System Design, pp. 190-

195, 2000.

[8] D. Valério, Toolbox ninteger for MatLab, v. 2.3, [online]

http://web.ist.utl.pt/duarte.valerio/ninteger/

ninteger.htm, 2005.

[9] D. Das, Functional Fractional Calculus for System Identification and

Controls, Springer, Berlin, 2008.

122

http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm

[10] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of

Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[11] D. Matignon, Generalized Fractional Differential and Difference

Equations: Stability Properties and Modeling Issues, Proc. of Math.

Theory of Networks and Systems Symposium, Padova, Italy, 1998.

[12] B.M. Vinagre, I. Podlubny, A. Hernández, V. Feliu, Some Approxima-

tions of Fractional Order Operators Used in Control Theory and Ap-

plications, [online] http://mechatronics.ece.usu.edu/

foc/cdc02tw/cdrom/Lectures/Lecture4/approx.pdf.

[13] A. Oustaloup, F. Levron, B. Mathieu, F. Nanot, Frequency-Band Com-

plex Noninteger Differentiator: Characterization and Synthesis. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Ap-

plications, 2000, 47(1):25–40.

[14] L. Ljung, System Identification Theory for the User (Second Edition),

Prentice Hall, New Jersey, 1999.

[15] R. Malti, M. Aoun, J. Sabatier, A. Oustaloup, Tutorial On System Iden-

tification Using Fractional Differentiation Models, 14th IFAC Sym-

posium on System Identification, Newcastle, Australia, pp. 606-611,

2006.

[16] T. Hartley, C. Lorenzo, Fractional-order System Identification Based

on Continuous-order Distributions, Signal Processing, 83, pp. 2287-

2300, 2003.

[17] D. Valério, J. Costa, Levy’s Identification Method Extended To Com-

mensurate Fractional Order Transfer Functions, EUROMECH Non-

linear Dynamics conference, Eindhoven, Netherlands, 2005.

[18] I. Podlubny, Fractional-order systems and PIλDµ-controllers, IEEE

Trans. on Automatic Control, vol. 44, pp. 208-214, 1999.

[19] Y. Luo, Y.Q. Chen, Fractional-order [proportional derivative] con-

troller for robust motion control: Tuning procedure and validation,

American Control Conference, pp. 1412-1417, 2009.

123

http://mechatronics.ece.usu.edu/foc/cdc02tw/cdrom/Lectures/Lecture4/approx.pdf
http://mechatronics.ece.usu.edu/foc/cdc02tw/cdrom/Lectures/Lecture4/approx.pdf

[20] M. Čech, M. Schlegel, The fractional-order PID controller outper-

forms the classical one, Process control 2006, Pardubice Technical

University, pp. 1-6, 2006.

[21] D. Xue, Y.Q. Chen, A Comparative Introduction of Four Fractional

Order Controllers, Proceedings of the 4th World Congress on Intelli-

gent Control and Automation, Shanghai, P.R. China, pp. 3228-3235,

2002.

[22] I. Podlubny, L. Dorcak, I. Kostial, On Fractional Derivatives,

Fractional-order Dynamic Systems and PIλDµ-controllers, Proc. of

the 36th IEEE CDC, San Diego, 1999.

[23] C.N. Zhao, D.Y. Xue, Y.Q. Chen, A fractional order PID tuning algo-

rithm for a class of fractional order plants, Proceedings of the Interna-

tional Conference on Mechatronics and Automation. Niagara, Canada,

pp. 216-221, 2005.

[24] C. Yeroglu, C. Onat, N. Tan, A new tuning method for PIλDµ con-

troller, Electrical and Electronics Engineering, ELECO 2009, pp. II-

312-II-316, 2009.

[25] B.J. Lurie, Three-parameter tunable tilt-integral-derivative (TID) con-

troller, US Patent US5371670, 1994.

[26] R. Oldenhuis, Optimize, MathWorks File Exchange, [on-

line] http://www.mathworks.com/matlabcentral/

fileexchange/24298-optimize, 2009.

[27] I. Podlubny, Geometric and Physical Interpretation of Fractional In-

tegration and Fractional Differentiation, Fractional Calculus and Ap-

plied Analysis, vol. 5, no. 4, pp. 367-386, 2002.

124

http://www.mathworks.com/matlabcentral/fileexchange/24298-optimize
http://www.mathworks.com/matlabcentral/fileexchange/24298-optimize

List of Publications

1. A. Tepljakov, E. Petlenkov and J. Belikov, FOMCON: Fractional-order Mod-

eling and Control Toolbox for MATLAB, MIXDES 2011, Gliwice, Poland, Ac-

cepted for presentation.

125

	Abstract
	Kokkuvõte
	Acknowledgements
	Introduction
	Fractional-order Calculus
	Outline of the Thesis

	Fractional Calculus in System Theory
	Mathematical Background
	Definitions
	Properties
	Examples

	Laplace Transform
	Fractional-order Models
	Fractional System Analysis
	Stability
	Time Domain Analysis
	Frequency Domain Analysis

	Approximation of Fractional Operators
	Discretization

	Identification by Fractional Model
	Identification Basics
	Time-domain Identification
	Frequency-domain Identification

	Fractional-order Control
	Fractional PID Controller
	Introduction
	Effects of Fractional Control Actions
	Tuning and Optimization

	Fractional Lead-Lag Compensator
	TID Controller

	FOMCON Toolbox for MATLAB
	Introduction
	Overview
	Used Notations

	FOMCON User Manual
	System Analysis Module
	The FOTF Object
	Function fotf()
	Function newfotf()
	Block Interconnection Functions
	Trimming Functions

	Stability Analysis
	Function isstable()

	Time Domain Analysis
	Function lsim()
	Function step()
	Function impulse()

	Frequency Domain Analysis
	Function freqresp()
	Function bode()
	Function nyquist()
	Function nichols()
	Function margin()

	Fractional-order System Approximation
	Function oustapp()
	Object fsparam()

	Object Conversion Functions
	Graphical User Interface
	Function fotf_gui()

	System Analysis Examples

	System Identification Module
	Time Domain Identification
	Object fidata()
	Function fid()

	Frequency Domain Identification
	Object ffidata()
	Function ffid()
	Function ffid_bf()

	Graphical User Interfaces
	Function fotfid()
	Function fotfrid()

	Identification Examples

	System Control Module
	Fractional-Order Controller Design
	Function fracpid()
	Function tid()
	Function frlc()

	Integer-Order Controller Tuning By Process Model Approximation
	Function fotf2io()

	PID Controller Optimization
	Object fpopt()
	Function fpid_optimize()

	Graphical User Interfaces
	Function fpid()
	Function fpid_optim()
	Function iopid_tune()

	Controller Design and Optimization Examples

	Simulink Blockset
	Library Overview
	Block Description
	Fractional operator
	Fractional derivative
	Fractional integrator
	Fractional Transfer Fcn
	Fractional PID controller
	TID controller
	Discrete fractional Transfer Fcn
	Discrete fractional PID controller

	Examples

	Discussion
	Conclusions
	Bibliography
	List of Publications

